Tag Archives: renewable energies

Solar Photovoltaic Bolivia

Until the first half of the 90s, the installed capacity in Bolivia was 5.000 photovoltaic systems mainly for telecommunications and rural households’ electrification.

During the second half of the decade, more than 5.000 systems were installed in the department of Santa Cruz in a project promoted by CRE distributor, with funding from the Netherlands Kingdom Embassy.

In addition to this, projects financed by NRECA in the so called “Yungas” region of La Paz department and Energética in Cochabamba (Chimboata and Intikanchay projects) were also implemented.

Since the year 2000, more than 2.000 systems are being installed per year from projects such as those implemented by the Social Investment Fund (FIS) and the La Paz department Prefecture.

The number of installed systems to date exceeds 35.000.

According to data provided by Energética NGO, 83,4% of existing photovoltaic solar installations are for home use, 16,3% for social using (health centers, educational units, churches, seniors centers, unions) and 0,3% are for productive use (spinning centers, craft centers, pumping systems).

Most facilities are located in the departments of Cochabamba, Oruro and Potosi.

There are three important aspects that can favor the country’s photovoltaic development:

1- The manufacture of components by Bolivian companies. One company has included photovoltaic system batteries in its offer and another produces charge controllers, PL-type fluorescent lamps and voltage converters.

2- The training of human resources in this technology, which has been included within technical training centers’ curriculums, which allows to provide the labor needed to support a significant rate of implementations.

3- Installations’ quality. Bolivia was the first country in the region to have own regulations that guarantee quality. They were developed by the BOL / 97 / G31 project implemented by the Department of Electricity and Alternative Energies financed by UNDP / GEF and issued by the Bolivian Institute for Standards and Quality (IBNORCA).

Although photovoltaic technology in Bolivia has reached a certain maturity, it still has challenges ahead. Especially in the field of productive uses which should enable rural people to increase their income. Thus, it would fulfill a great purpose: to bring development to rural areas.

The second phase of the first solar power plant was recently inaugurated in the country (the 1st phase was delivered in September 2014) with a capacity of 5.1 MW and located in Villa Bush (Pando).

Cobija Photovoltaic Solar Plant will provide continuous power to the municipalities of Cobija, Porvenir, Filadelfia, Bella Flor and Puerto Rico.

The project’s total investment was U$D 11 million. The National Electricity Company (ENDE) invested U$D 4.98 million (47%), while the Danish Cooperation made a non-repayable contribution of U$D 6 million (53%).

Energy from Cobija Photovoltaic Solar Plant is expected to substitute the consumption of 1.9 million liters (0.43 million Gallons) of diesel per year.

The projected Oruro Department solar plant will have a capacity of 20 MW and its construction will involve the investment of U$D 45 million.

Solar Thermal Bolivia

In Bolivia, it is estimated that solar thermal installations will increase at a pace of around 500 per year across the country.

This growth is obviously too slow considering Bolivia’s solar potential.

Its radiation is so high that many applications of solar thermal energy could be used.

However, the domestic market is emerging and there are few companies dedicated to this technology.

The most active area is located in the central region of Cochabamba where there are 5 companies that are mainly engaged in thermosiphon equipment installations.

In Bolivia, energy is only available to a small proportion of the population. Broad sectors of poor people in rural areas are not connected to the public electricity network.

The electricity and gas distribution network do not reach these remote regions because this expansion would not result in profits for suppliers.

The use of solar thermal energy has an enormous potential for providing hot water to communities in the highlands, where there are very low temperatures that adversely affect the region’s production and people’s daily activities.

Weather conditions in the Bolivian highlands are extreme due to night frosts. Water from pits or pipes have a very low temperature and therefore it needs to be heated by electricity or gas for people’s personal hygiene and for washing clothes and various items.

As Bolivia is located near the Equator, solar radiation is very high and with no variation between summer and winter periods. Therefore, there are ideal conditions for using solar energy in water heating.

From all of the above, it is clear that the key to overcoming this situation is to stimulate the solar thermal products market growth through policies that affect both supply and demand in the departments of La Paz, Oruro and Cochabamba.

This would contribute to poverty alleviation, environmental conservation and natural resources protection.

From a business point of view, this would encourage the establishment of many companies in the area.

The spread of this technology is currently limited in Bolivia by:

– Technological shortcomings

– Lack of means for certification rating

– Inefficient structures in service, sales and maintenance

– Distrust of potential users

– High production and services costs originated in limited production and sales volumes

– Poor access to financing

– Lack of state incentives (financing, subsidies or tax exemptions).

Solar Thermal Argentina

In terms of solar thermal energy, Argentina has entered a process of incorporating this technology taking the construction sector as an engine for market development, in absence of laws and regulations to boost it.

There are isolated initiatives. In fact, there are municipalities with Bills or solar ordinances, such as the city of Rosario.

But we could say that the field of solar thermal energy in Argentina is still in diapers.

Up to today, year 2015, there are no comprehensive measures of solar resources available, equipment have not been subjected to testing or certification and have no market sector statistical information.

Generally thermo-siphon systems are installed for DHW heating in houses and townhouses where there is no access to the gas network. Equipment for pool heating are also installed.

A 2009 estimate indicates that around 2,000 m² (about 22,000 ft²) of collectors were installed that year and were about doubled in 2010, reaching 4,000 m2 (about 43,000 ft²).

Flat collectors then constituted 2/3 of the market with a large proportion of domestic products, being vacuum tubes the most imported collectors.

In 2015, it is calculated that above 30,000 m² (around 323,000 ft²) collector capacity was installed; half of them for heating outdoor pools.

Most companies in the sector are located in the Central Region (mainly in Buenos Aires) and the Northwest Region is the one with the largest area of collectors installed, followed by the Northeast.

How could this technology’s sustained development be boosted ?

As far as the public sector is concerned, it would require:

– Elimination of the competitive disadvantage caused by high subsidies for electricity and gas network.

– Standards sanctioning and incentives creation.

– Set an example by incorporating solar systems in its infrastructure facilities.

As for the private sector, it would require:

– Introducing improvements in product quality.

– Training skilled labor on sizing and system design, installation and maintenance.

– Facing the additional challenge of foreign competition, in some cases, with equipment at a lower cost and better performance than those of domestic manufacturing.

Only in the residential sector, there is an estimated potential of 6 million m2 (about 65 mill ft²) for the production of DHW; 2.2 million m2 (around 24 mill ft²) in the public, commercial and services sectors, plus a significant potential in the industrial sector.

Considering 20 years of useful life for a thermal solar system, full investment could be recovered in about 15 years in Buenos Aires province, for instance, when compared with actual price of gas network and considering its level of insolation.

However, in cases of bottled gas and electricity, solar thermal power technology is already profitable in many parts of the central and north regions of the country.

Compared with bottled gas, investment in solar thermal systems could be recovered in 2 years.

Compared with the use of an electric water heater, investment in solar thermal systems could be recovered in about 5 years.

A consistent solar thermal market would provide several benefits to the country:

– Reduction in conventional energy demand.

– Reduction in energy imports

– Reduction of greenhouse gases’ emissions.

– Creation of a new industry sector and new jobs.

– Creation of a national industry sector with high added value.

Solar Argentina

In 1992, Argentina divided the public electricity sector in generation, distribution and transmission, and sold it to private investors.

When the 2001-2002 economic crisis shook the country and its currency was devalued, the government, fearing the political cost an electricity price increase would cause, froze natural gas prices and end users tariffs in 2002.

The solution worked in the short-term, but stopped the exploration of new energy sources and investment in infrastructure improvements by foreign investors.

The national natural gas extraction declined, leaving power generation facilities unused and increasing energy imports.

With the economic recovery, demand for energy soared by an average of 5% a year since 2003.

Enarsa was created in 2004 with the primary mission of exploring and extracting hydrocarbons, oil and natural gas; plus transportation and distribution of these resources. However, power failures remain a problem.

Argentina has invested heavily in a renewable resource: water. This resource accounts for about 35% of electricity, so a greater diversification is necessary to avoid the problems a severe drought would cause.

Oddly enough, judging by the development it has taken so far, Argentina is one of the countries with the highest potential for renewable energies.

Argentina could supply all of its electricity consumption with renewable energy, and could even become a net exporter.

In 2006 the regulatory framework was established with the enactment of Law 26.190/06, giving renewables a national interest. It was set as a target for 2016, that Argentina should reach 8% of electricity generation from renewable sources.

Current figures indicate that in 2016 it will barely exceed 2%, achieving, therefore, only a little more tan 25% of the objective.

In 2009, the national government launched with Enarsa (the public energy company) the GENREN program, which offered to buy 1.000 MW of renewable energy by 15-year fixed contracts.

In June 2010, after an exhaustive analysis, the winners were announced and a total of 895 MW were approved.

Most of the bids were for wind energy.

Even though the central and northern parts of the country enjoy many sunshine days throughout the year that would allow many applications to take advantage of solar energy, only 20 MW photovoltaic solar energy projects were granted in the province of San Juan.

Economic instability in recent decades contrasts with the expected energy crisis in which Argentina is sinking ever more rapidly.

With rates that do not reflect the true cost of resources nor the need for investment and a subsidies policy that will soon come to an inevitable end, renewable energies gain a value that they never had before.

Uncertainty about the availability and value of energy in the future is a question that only the state can solve with energy planning and implementing public policies, promoting energy efficiency and clean energy.

Who makes business with solar energy ?

The attempt to answer this question leads us to understand the development level achieved by this technology and exposes the dark side of the energy matrix in, except isolated cases, most countries.

We must take 2 points of view:

1) Distributed Solar Generation (Intelligent Network)

Distributed Solar generation is business for the consumer and for the country’s economy.

On the consumers’ side, it allows them to generate their own energy and to buy energy from distributors only if their demand exceeds their energy generation capacity.

For the country’s economy, because it increases their energy sovereignty and promotes job creation (professionals, installers, equipment suppliers and related sectors).

2) Centralized Solar Generation (Conventional Network)

Centralized Solar generation is business for energy generating and distributing companies and for political parties.

For generation and distribution companies, because they continue controlling the energy business.

For political parties, because they get funding and returns from generating companies and energy distributors and because it is much easier to “cut deals” with just a few than doing serious long-term work, creating a regulatory framework that truly encourages distributed generation and that benefits both citizens and the country’s economy.

Solar energy’s competitive advantage is that it can be generated in the place where it is consumed, making distribution unnecessary and eliminating all energy losses that its transport causes.

Efforts should focus on distributed systems installation and solar energy integration in urban environments, developing residential, secondary and tertiary markets.

The ups and downs suffered in European countries (the most representative case is the photovoltaic sector in Spain) that have given prominence to large-scale projects, indicate that that is not the right way and that it only benefits a few.

The future of a solid and consistent solar energy sector clearly entails:

1) A limited number of specific centralized generation projects on soil that has no other purpose and in areas with very high levels of solar radiation (e.g. semi-desert areas).

2) Encouraging installations on individuals’ and companies’ roofs.

3) Distributed generation’s development due to energetic efficiency and continuity in supply (catastrophes, terrorist attacks, warfare).

Political parties and energy generating and distribution companies have been throwing spanners in the works and the latest trick they have pulled out of their hat is charging very high “access fees” to those who have a solar generator connected to network.

This has caused surreal situations in which fines on those who generate their own power are applied or that make it more profitable to continue with the centralized generation and distribution’s “status quo” rather than investing in solar energy.

The real paradox is that most of the infrastructures exploited currently by energy generation and distribution companies were originally State assets.

Private or private with state participation companies that currently operate these infrastructures they received have well amortized them already.

They have done little to modernize them and are reluctant to invest in modern transmission networks and interconnected bidirectional measurement equipment.

What should be clear is that the future of the energy sector is the energetic efficiency, the distributed generation and the renewable energies incorporation.

These should be the 3 objectives to pursue.

While new players, technologies, situations and settings will appear; regulations or policy should encourage progress towards these 3 objectives or they will not be doing their job.

Regulation should be implemented “ex ante” and must be updated “ex post” according to the energy sector’s development, distributed generation growth and renewable energies incorporation degree.

For countries that want to seriously work for their citizens and their economy there are vast examples of regulatory frameworks that can be taken as a starting point and adapt to each country’s reality.

For example, the Spanish CTE (Technical Building Code) in case of solar thermal energy and several US states’ legislation in case of solar photovoltaic energy.