Tag Archives: renewable energies in latin america

Sopelia Country Manager in Latin America Countries

If you want to join the Sopelia Network in Latin America for 2017 period you can send your request.

The Sopelia Network allows:

– Being part of a solar energy experts powerful networking at regional level

– Access to a medium that provides an opportunity to promote projects, research, activities and personal initiatives

– Participate in sectoral researchs to increase Sopelia benefits and enrich personal background

– Expose your profile in Sopelia

– Represent Sopelia in solar industry events

– Have the wide Sopelia offer and support to market

2016-09-01

What are the requirements to be Sopelia Country Manager ?

* Have completed a Technical-Commercial Training (thermal or photovoltaic) in Sopelia

* Have less than 30 years

* Reside in a Latin American country

* Provide valuable content to Sopelia (between 300 and 500 words) relating to solar sector in your country (minimum 1 Quarterly article) in native language and English

* Maintain a proactive approach to promote Sopelia products and services in your country of residence

2016-09-01 (2)

Sopelia Country Manager Profile:

+ Technical, environmental, renewable energy, economy, science, architecture or engineering degree

+ Native language and English advanced level

+ Experience in developing editorial content

+ Develop activity in the field of renewable energies, environment or linked industry

If you meet the requirements and you are interested in joining the Sopelia network, send a message to www.sopelia.com Contact section indicating Ref .: Country Manager + country of residence in the subject of your message.

Professionally development in a sector with huge potential with Sopelia.

(Español) 10 Semanas Solares Térmicas

Sorry, this entry is only available in European Spanish.

(Español) 10 Semanas Fotovoltaicas

Sorry, this entry is only available in European Spanish.

Solar Energy Wherever You Are

Many times the purpose of incorporating solar energy to our professional skills, scope of business or personal life has hovered in our head.

We have almost always run into the same barrier: time.

We are working or studying and we find it very difficult to have even a few hours a week.

It is rare to find training offerings that are not too short (few hours workshops) or too long (one or more years) and which in turn have an affordable price.

If we add the difficulty of having to move, because most are taught in presence way, finally we ended up postponing again and again this purpose.

In 2014 Sopelia gave, in collaboration with the Technology National University of Mar del Plata (Argentina), the Technical – Commercial Solar Energy Course in tele-learning (distance + presence) methodology.

In 2016 Sopelia updated and divided that training action in 2 specific courses:

* Technical – Commercial Solar Thermal Energy

* Technical – Commercial Photovoltaic Solar Energy

2016-08-03 (1)

Sopelia rode them on a Moodle 3.1 platform and the result is 2 courses in e-learning methodology.

This means you can receive Solar Energy training with the best market value wherever you are.

You only need a computer, smartphone or mobile device and Internet.

Being the 1st edition there is a 50% off list price.

These two courses provide technical and commercial training in solar energy domestic applications with the aim of spreading the technology and develop human resources for incorporation into work and business world.

You will identify the most relevant aspects of solar energy within the current energy landscape.

You will define, describe and analyze the most important features of solar energy.

You will know the composition, understand the operation, design and maintenance of facilities to implement thermal and photovoltaic solar energy projects.

2016-08-03

It is a training aimed at students and technical careers graduates, technical schools graduates, engineers, architects, professionals and installers of related sectors (air conditioning, electricity, rural), people with experience in renewable energies, environmental professionals and individuals interested in incorporating solar energy into their lives.

The 2016 edition starts on September 19th and ends on November 25th.

You can register until 16 September inclusive in www.energiasrenovables.lat

If you are under 30 years old and live in Latin America, with the course completed, you can apply to be Sopelia Country Manager in your country of residence.

And if you are under 25 and live in Latin America, you can get a 50% scholarship and finished the course, apply to become Sopelia Trainee.

If you speak Spanish you have no excuses, Solar Energy wherever you are with Sopelia.

Passive Solar Energy

One of the most important issues in energy conservation areas and solar energy use is undoubtedly homes and workplaces air conditioning application.

This sector accounts about 40% of the total energy consumed. The savings can be achieved by using solar energy for heating is of the order of 60% to 80% depending on house design.

The principles of bioclimatic architecture should be applied in all new urban plans.

When speaking of passive solar architecture, we talk about modeling, selection and use of passive solar technology, which is capable of maintaining a comfortable and pleasant temperature home environment through the sun. This type of architecture is only a small part of the energy efficient buildings design and is considered as part of sustainable design.

Resultado de imagen de energía solar pasiva

There are three types of solar gain:

1) Direct solar gain: refers to the use of windows, skylights and blinds to control the amount of solar radiation reaching the inside of a housing, in combination with mass floors.

2) Indirect solar gain: is achieved through the skin of the building, designed with certain thermal mass. An example of this gain is also the garden roof.

3) Isolated solar gain: is the process in which the main thing is the sun heat passive capture, and then transport it inside or outside the home.

There are considerations to take into account in this type of architecture implementation, to give his best result:

* Building orientation

* Construction features

* Environment use

Resultado de imagen de energía solar pasiva

In existing buildings we can always intervene to improve thermal insulation, sun blinds open in winter or adding a glass gallery on the north side of the house if we are located in the southern hemisphere.

To heat the house with the sun, a clear winter north facade without many neighbors who clog the midday sun is needed.

Main glazings must be on the north facade. For example, if we are located in the southern half of Argentina we need 1.4 to 2 m2 of north glass for every 10 m2 stay we want to heat.

Windows should be closed with curtains or blinds at night to heat captured not escape. It is good to improve thermal insulation as far as possible and have thermal mass (building material in walls, floors) which accumulate the heat of the day to the night. For summer it is necessary to place eaves, awnings, vines, etc. that shade windows in.

You can acces more Spanish language content like this in Manual Técnico – Comercial de Energía Solar Térmica by Sopelia.

PV Profitability

The profitability of a photovoltaic system must be analyzed with certain nuances.

The weightiest factor when deciding whether it is feasible or not, is the potential energy savings during their years of life.

In the case of an isolated photovoltaic system, economic factor is not the main determining factor in deciding whether or not installation (electrification of rural areas, marine signaling, energy demand in remote locations, etc.).

Isolated (Off-grid) Systems

Installation can be evaluated for 2 reasons:

1. A range of total supply needed

2. Power grid not reach where energy demand originates

In the latter case you can opt for laying a new distribution line from the nearest point of the overall grid or choose an autonomous system.

When great powers are not needed and consumption is moderate, the option of autonomous generator is more interesting. Obviously, the higher or lower placement solar radiation level is another determinative factor.

In abundant wind areas, a wind turbine or a wind combined with photovoltaic system may be the most convenient option.

In cases where is needed a fairly large power requiring a large number of solar modules while consumption was not high enough to justify the laying of a grid line, the diesel generator can be the best option.

If both budgets (solar isolated and line grid laying) are of similar magnitude (or even laying a grid line is slightly higher), it can be more interesting access to the electricity grid, which will ensure any consumer at any time of year.

Grid connected (On-grid) Systems

It consists of a module field and inverter which can convert DC generated into AC identical to that of the electricity distribution network, to inject energy produced by the modules into the grid.

In return, you can received a contribution (feed-in tariff) established by law for a period which generally ranges between 15 and 25 years.

To realize the economic study should first determine electricity production depending on the sunshine hours of installation location and installed peak power.

Annual electricity production is then multiplied by the contribution is allocated to the project.

Finally a cash flow is prepared detailing revenues (sale of electricity and taxes recovery) and expenses (initial investment, annual maintenance and insurance costs, administrative and financial annual expenses) for the entire period.

From the data obtained the recovery period and IRR of the investment is determined.

The other way is the net-metering.

In this case, the owner of the photovoltaic system can take power from the grid when their system can not provide enough to meet demand, and inject energy to the grid when their system produces above necessary to meet demand.

The solar module prices fell reaching the threshold of U$D 0.50/W Exworks for conventional crystalline silicon modules.

Simultaneously, the price of electricity generated from fossil fuels is increasing annually.

In fact, it is estimated that several European countries will reach grid-parity (equal price between PV and conventional electricity) in 2020.

In developing countries, photovoltaic systems connected to the grid will remain still an expensive option because of the high subsidies electricity generation and distribution receive; limiting their development.

The turnkey price of a fixed installation connected to the grid (modules, support structures, inverters, protections, measurement systems, project costs, installation and administrative permissions) ranges from U$D 2 and 5/W depending on the facility size and location.

You can access content like this in Spanish in the Manual Técnico – Comercial de Energía Solar Fotovoltaica de Sopelia.

Solar Ecuador

There is a saying “for sample we need only a button”.

If you visit the Ministry of Electricity and Renewable Energy of Ecuador website you will see a section called “Flagship Projects”.

Lets make a bet. Of a total of 9 renewable projects, how many you think are of solar energy?

Given that we are talking about a country with one of the highest levels of solar radiation probably our response would be 1 or more.

The correct answer is zero.

Of the 9 total projects, 8 are hydroelectric and 1 is wind.

We can conclude that there is a strong rainfall dependence and a lack of renewable energy matrix diversification in Ecuador.

Being located in the middle of the planet, the potential use of solar energy in the country is huge and its extensive use would help achieve energy independence in the long run.

Leaving aside the dominance of hydropower, Ecuador has made progress in wind generation in various regions.

In Loja, the Villonaco Windfarm, located 2,720 m above sea level, has 11 turbines that generate 16.5 MW.

Renewable energies have been consolidated in Galapagos, with advanced projects in wind, photovoltaics and biofuels energy.

In 2007, three wind turbines were installed on San Cristobal island, to give it 2.4 MW. This wind park can cover 30% of island electricity demand.

Since 2005 operates a photovoltaic park in Floreana, which covers 30% of the electrical energy required.
There is a wind park in Baltra with 2.1 MW capacity.

In solar energy, low activity remained thanks to agreements with German government.

Since 2004, the German Energy Agency launched the Solar Roofs Program to promote renewable energy pilot projects in regions of high solar radiation.

The Government developed photovoltaic projects in 8 Gulf of Guayaquil municipalities. The Eurosolar Program gives electricity to 91 isolated communities with support from the European Union.

For solar energy development a law that favored investors was created, but it didn´t work because there´s no financial guarantee for such investments.

The current renewable energies regulation in Ecuador is still quite poor.

It is difficult to develop big projects in the country, so that distributed generation using photovoltaic systems connected to the electricity grid should be promoted.

But it happens that there is no regulation for these systems which discharge energy to the national grid, no values to remunerate people who bring energy are set and, on the contrary, the excess energy being poured it is also charged.

Wind resource is scarce in the tropical region where the country is located as there are no significant winds and in the evening these winds are practically nonexistent.

Ecuador should take advantage of geothermal energy taking into account the geological conditions of the country, but develop this energy involves making very expensive studies.

Ecuador’s location is optimal for solar energy harnessing.

There is another saying “God gives bread to those who have no teeth.”

Solar business and projects in Latam with Sopelia

Cuba Solar Pv

Since Soviet Union demise and US blockade intensification, Cuba has made great efforts to get its energy supply.

Its plans included solar energy, mainly in inaccessible areas where the national electricity system (medical clinics, rural hospitals, social clubs, TV rooms and schools) fails.

In medical clinics 400 W power equipments were installed to provide energy to 1 fridge 12 lamps of 15 W, 1 television and 1 radio to communicate with other clinics and hospitals.

In schools solar equipment was installed to provide lighting systems, TVs and computers.

The government built TV rooms, that were equipped with solar systems, in villages that have no electricity. Each TV room has 1 solar module, 1 TV, 1 video and 30 or 50 seats according to population density. The investment was around U$D 4.500 per TV room.

The first large-scale photovoltaic energy facility has installed more than 14.100 modules domestically manufactured. The plant is located in Cienfuegos province. The park, which was build in 2012, connected 2.6 MW to the national grid.

There are also installed photovoltaic plants connected to the grid in Guantanamo, Santiago de Cuba and Santa Clara provinces. The last one can produce electric energy to daily supply about 750 homes at full capacity and can contribute to the national grid with about 962 kW.

The photovoltaic solar park of Pinar del Rio has connected its first MW of the 3 provided, to the national electricity system. This facility, located in the area of Cayo Cana, provide energy to some Wells that supply water to provincial capital and 8,000 people.

Today are already active over 15 photovoltaic plants, in which each MW installed, on average, can produce 1,5 GW/h per year; saving the country annually 430 tons of fuel.

This leap to large-scale plants shows government interest to increase solar energy use and the opportunity to exploit an abundant resource, since the solar radiation average in Cuba is greater than 1,800 kW/h /m2 per year.

In addition, modules are manufactured in a factory located in Pinar del Río province. The local industry has substantial production line technological improvements, which in 2015 reached 60,000 modules focusing on 250 W panels.

Another sign of solar energy interest is the dean Solar Energy Chair, which founded on September 6 2001, at the University of Havana, reaffirms the renewable energy use momentum in Cuba where photovoltaics plays an important role.

Solar business in Latam with Sopelia

What is the best solar collector?

What qualities should we consider when selecting a solar thermal collector?

Are two:

1- Its constructive qualities. Determines the durability and architectural integration possibility.

2- His energetic qualities. Determines economic performance.

In some respects both qualities are interrelated.

A good solar collector is one who possesses both qualities well balanced for the intended application.

There is no use a solar collector with an extraordinary energy intake if their constructive qualities fail or degrade quickly, since the profitability of these facilities is measured in the medium term.

There is no use a solar collector with extraordinary constructive qualities if their energetic qualities fail, because, simply, it is not fulfilling its main task.

By observing the solar collector performance curve, we see that it depends on a variable which is the temperature T, which in turn depends on the solar radiation I, on solar collector fluid inlet temperature Te and on ambient temperature Ta.

That is, the performance of a collector depends:

– On one side of the weather conditions, given by I and Ta,

– On the other side of the working conditions, that is, of what it is used, given by Te.

Therefore, when selecting a collector must be considered:

1) The application will have (only ACS, only heating, hot water and heating, pool heating, etc.).

2) Climatic and radiation conditions of facility location.

3) Models performance curves.

4) Equipment price.

5) The economic profitability (based purely on the relationship between price and yield) and investment recovery period.

6) Its construction quality.

You need to balance construction quality with energetic quality.

There is an open debate among professionals about which of the two most used collectors technologies is the most appropriate: flat or vacuum tube collector?

Those who opt for vacuum tube collectors consider them more advanced and argue that in the future this technology will eventually displace definitely flat plate collectors because of their better performance.

The increased cost gap of vacuum tube collectors respect to flat collectors has been reduced and we can find collectors of both technologies at the same price.

Supporters of the vacuum tube collectors consider opting for them is compensated, because by offering higher performance per m2 we will need to purchase less collectors.

This is not necessarily true, especially in small facilities:

In a small facility that only provides ACS with good weather and radiation conditions, flat plate collectors performance and profitability will be greater.

As you increase the size of the installation, the vacuum tube collector highest performance will offset the lower absorbing surface.

We will also consider building integration of vacuum tubes direct flow collectors (U-Pipe) that can be placed vertically covering a façade or balcony.

In short, a properly trained professional must assess based on the following factors choosing one or the other technology:

• Specific requirements of the installation

• Location climatology in every season

• Previous experience

• Budget availability.

You can find content like this in the Technical – Commercial Solar Thermal Energy Manual by Sopelia