Tag Archives: energia solar fotovoltaica en america latina

Solar Tracking Systems

To harness as much solar energy as possible, collection surface must always be perpendicular to the sun’s rays and this can only be achieved if modules are equipped with a solar tracking mechanism.
Using these mechanisms, total energy received in a day can be up to 35% higher compared to that received by a static module.

This difference in performance is reduced in cases of frequent cloudy days and in all those weather conditions in which the relationship between energy received by direct radiation and that received by diffuse radiation tends to decrease. That is why it is only recommended to use it in areas of low cloudiness.

A detailed analysis must be carried out to verify that performance increase achieved more than compensates for energy consumption and the cost and maintenance of monitoring mechanisms.

The two types of movement are:

1. Single axis: only allows rotation around a horizontal, vertical or inclined axis. You can track sun azimuth or height, but not both at the same time.

Ver las imágenes de origen

2. 2-axis: in addition to the east-west rotation movement, a second rotary movement on a horizontal axis is also possible by varying the module angle with respect to the horizontal plane. They can be monopost (a single central support) or carrousel (several supports distributed along a circular surface).

Ver las imágenes de origen

We can find different solar tracking systems. The most common are:

1. Passive tracking systems: These devices do not use electricity or have a motor. There are two North American patents. The first (Robbins Engineering) is based on Freon gas pressure expansion and contraction contained in two cylinders located on each side of the structure. The second (Zomeworks) is a gravity system based on the variation of the weight of a fluid contained in a container that when evaporated passes to another.

2. Tracking by sensors: the sensor is the element that allows the detection and measurement of the lack of direction between the sun vector and the normal to capture surface. The sensor is usually made up of pairs of photosensitive elements mounted on the module and moving in solidarity with it.
The photosensors use direct solar radiation to detect sun position. Tracking impossibility when sun occultations occur and need to spend time recovering address when sun reappears are inherent characteristics of all systems of tracking based on photosensors.
Deviation detected by the photosensors transmits an actuation signal that controls motors operation to achieve module movement. Constant speed motors are often used that operate intermittently so that the addressing error is kept within a tolerance band.
Systems using photosensors are used for small and medium systems.
Between one day’s sunset and the next day’s sunrise, the module must be placed in the sunrise position because once the sun has risen, much time would be lost in the 180º turn necessary to regain direction. For this, a clock is used that generates the appropriate order.

3. Tracking by calculated coordinates: this system follows sun position by calculating its astronomical coordinates and does not require solar rays physical presence. This circumstance renders coordinate systems immune to cloudy days and other circumstances that can produce addressing errors in a photosensor, as happens for example with flashes.
The use of computer controlled systems has the additional advantage that certain changes can be made at software level only.
It can also include additional functions such as bringing the modules to a position of maximum security against inclement weather or the return at night.

Sopelia has developed Solar Layout, the Android App that allows to obtain the inclination, orientation and distance between rows of photovoltaic modules at the installation site.

This content was extracted from the Commercial Technical Manual of Photovoltaic Solar Energy and is part of Sopelia Solar e-learning.

All you need is Sun. All you need is Sopelia.

Architectural Solar Integration

Photovoltaic solar energy is the one that best integrates into the urban environment. For this reason, architectural solutions that incorporate it have emerged. Some are listed below.

In homes with a tiled roof, these can easily be replaced by same type photovoltaic tiles, since it is not necessary to change canning or slats and roof structure remains the same.

Ver las imágenes de origen

Aluminum facades integrating photovoltaic cells are an alternative for new buildings or renovation projects.

Ver las imágenes de origen

Photovoltaic modules with transparency together with aluminum profiles can be easily integrated into vertical walls, ceilings and roofs. These transparent modules are available in a wide range of applications, shapes and opacity.

Photovoltaic cells are embedded in the laminated safety glass. By varying glass weft position and density, it is possible to adjust light transmission and shadow effect inside the building.

For opaque solar modules in walls it is necessary to incorporate insulating materials that are behind to provide the necessary thermal barrier. The opaque and transparent modules can be combined on the same facade, improving building energy, thermal and acoustic efficiency.

Ver las imágenes de origen

In addition to producing clean electricity, ventilated photovoltaic facade system incorporates benefits in building thermal and acoustic insulation. The thermal envelope can cause savings of between 25-40% of the energy consumed in the building.

Ver las imágenes de origen

A photovoltaic skylight, in addition to photovoltaic generation, provides bioclimatic properties of thermal comfort inside the building due to the insulating glass air chamber. It also facilitates natural lighting and prevents UV rays and infrared radiation from penetrating into the building (improving comfort and avoiding premature materials aging).

Ver las imágenes de origen

A photovoltaic canopy constitutes a constructive solution that combines electrical energy generation with solar protection properties and against adverse weather conditions.

The orientation, the minimum slope, the dimensions or the wind and snow loads are important factors to take into account when designing the structure.

Ver las imágenes de origen

A photovoltaic car park consists of a structure that, in addition to protecting the vehicle, guarantees the in-situ energy generation for its grid discharge, self-consumption or electric car batteries supply.

Ver las imágenes de origen

The first photovoltaic ceramic floor has also been released. It consists of photovoltaic solar glass integrated in high ceramic pavements, these being fully passable. It can be integrated into any project and environment without this giving up the design or aesthetics of it.

Ver las imágenes de origen

Buildings, by integrating photovoltaic modules, create a world of possibilities. The great variety, shapes, colors and structures of photovoltaic cells, glass and profiles allow a modern architectural approach and also an innovative design combining elegance and functionality.

Sopelia has developed Solar Layout, the Android App that allows to obtain the inclination, orientation and distance between rows of photovoltaic modules at the installation site.

This content was extracted from the Commercial Technical Manual of Photovoltaic Solar Energy and is part of Sopelia Solar e-learning.

All you need is Sun. All you need is Sopelia.

Solar PV Latin America

Latin America generates about 7% of the world’s electricity and non-traditional sources account only for 6% of the energy mix.

It is expected that by 2050 over 20% of the electricity generated in the region will come from non-hydro renewables.

May the contribution of photovoltaics be significant?

This technology has great potential in the region, but is still marginalized to the background among the countries’ energy choices and many times what is done about it is just to “stand” and very little is accomplished.

Compared to the rest of the world, the rate of solar photovoltaic energy implementation in Latin America is very low.

Annually the installation of about 100 GW of solar photovoltaic energy is expected worldwide and usually only 1% corresponds to this region.

However, the fact of not having been one of the pioneer regions where the development of this technology began will allow learning from other regions or countries mistakes.

We must distinguish between solar industrial development (manufacturing of modules and other components) and solar energy (solar electricity).

Solar industrial development in the region has difficulties with the sharp drop in solar modules’ prices.

In contrast, solar electricity production is favored by the fall in modules prices and makes solar photovoltaic energy more competitive.

The average cost of 1 W of installed solar PV has dramatically dropped in recent years and most projections indicate that this trend will continue. The underlying costs associated with solar photovoltaic energy will also continue to decline.

PV installed capacity of Latin American countries has always been oriented to isolated applications to meet the needs of rural populations without access to electricity network.

Only after 2014 solar photovoltaic projects began to attract capital.

Latin America has 51 solar photovoltaic plants in operation and 625 MW of installed PV in 2014, compared to 133 MW in 2013. They have announced 23 GW projects, 5,2 GW in contracts, 1,1 GW under construction and 722 MW in operation.

From GTM Research consultancy recent studies show that the installed capacity in MW has increased 370% in 2014 and is expected to rise 237% in 2015.

This figure could be revised downwards following the price collapse that has rocked the oil industry and the commodity sector in recent months.

Today, in Latin American countries with good levels of radiation and without large subsidies in the energy market, the model of solar PV is self-sustaining.

In some cities in Mexico, Brazil, Chile and Peru, the solar PV cost is situated very close to grid parity.

Countries like Costa Rica, Guatemala, Mexico, Panama, Dominican Republic and Uruguay already have national laws and regulations in place for connecting photovoltaic generators under the net metering system.

The most suitable places to locate large plants are the deserts near the Pacific coast and northeastern Brazil.

Over the next 20 years it is expected that the investment in solar photovoltaic energy per year will reach about U$S 100.000 million worldwide.

A forecasted development of 3,5 GW is estimated in Latin America by 2016.

Could this be possible?

To know it, we are going to do a country-by-country analysis because there are very different realities.