Archivo de la etiqueta: energías renovables en américa latina

Cableado Solar

Los cables, tanto de corriente continua (CC) como de corriente alterna (CA), si son correctamente dimensionados minimizarán las pérdidas energéticas y protegerán la instalación.

Para un sistema fotovoltaico los cables de CC deben cumplir una serie de requisitos:

* Contar con protección contra cortocircuito y línea de puesta a tierra.
* Ser resistentes a los rayos UV y a las condiciones meteorológicas adversas con un gran rango de temperaturas (aproximadamente entre -40ºC y 110ºC).
* Poseer un amplio rango de tensión (más de 2000 V).
* Ser de manipulación fácil y simple.
* Ser no inflamables, de bajo nivel tóxico en caso de incendio y sin halógenos.
* Poseer una pérdida de conducción muy escasa (hasta un 1%).

Los cables para una instalación fotovoltaica deben tener ciertas características que los diferencian de los cables convencionales a pesar de que muchos sostienen que las diferencias no son muy grandes.

Como el voltaje en un sistema fotovoltaico es voltaje CC bajo, 12 o 24 V, las corrientes que fluirán a través de los cables son mucho más altas que las de los sistemas con voltaje CA de 110 o 220 V.

La cantidad de potencia en Watts producida por la batería o panel fotovoltaico está dada por la siguiente fórmula: P = V . I

V = tensión en Voltios
I = corriente en Amperios

Esto significa que para suministrar una potencia a 12 V la corriente será casi 20 veces más alta que en un sistema de 220 V. Implica que deben unirse cables mucho más gruesos para impedir el recalentamiento o incluso un incendio.

La siguiente tabla indica la sección de cable recomendada de acuerdo con la potencia y para distintos niveles de tensión.

Se observa que para voltajes bajos y bajas demandas de potencia deben utilizarse cables muy gruesos.

Por ejemplo, para alcanzar una potencia de aproximadamente 1 Kw a 12 V necesitaríamos un cable de 25 mm2 de sección. El mismo que para suministrar 20 Kw a 220 V. Esto aumenta el precio del sistema drásticamente debido a que los cables más gruesos son más costosos.

Por eso es muy importante que los tramos de cableado de CC sean lo más cortos posibles.

Cuando se diseñan sistemas grandes, debe realizarse un análisis de costo/performance para elegir el voltaje operativo más adecuado. Sería recomendable reunir pequeños grupos de módulos y de ser posible hacer el voltaje de operación más alto que 12 ó 24 V.

Para verificar los valores de sección de cable recomendados en tablas, las máximas caídas de tensión comparadas con la tensión a la que se esté trabajando deberían estar por debajo del límite del 3% / 5%.

Para calcular la relación entre la sección del conductor y su longitud podemos aplicar la siguiente fórmula:

S = 2 . r . l . i / ΔV

Siendo:

r Resistividad del material conductor (0,018 en el caso de conductores de cobre)
l Longitud del tramo de cable
i Intensidad de la corriente
ΔV Diferencia de lectura del voltímetro

Veamos un ejemplo:

La tensión a la salida de los bornes de una batería es de 13,1 V. La línea principal entre ésta y un dispositivo, que consume 60 W, mide 12 m de cable de 6 mm2.

Debemos encontrar el valor de tensión a la entrada del dispositivo para verificar que nos encontramos dentro de los valores máximos recomendados de caída de tensión.

La intensidad i = P / V = 60 / 13,1 = 4,6 A

S = 6 = 2 . 0,018 . 12 . 4,6 / ΔV

ΔV = 0,33 V

Por lo tanto la tensión a la entrada del dispositivo valdrá: 13,1 – 0,33 = 12,8 V

La caída de tensión es del 2,34% (valor máximo recomendado: 3%).

Lo normal es recurrir a tablas para seleccionar la sección recomendada y utilizar la fórmula para calcular la caída de tensión y realizar la verificación.

En caso de que se superen los valores máximos recomendados de caída de tensión seleccionaremos la sección inmediatamente superior y realizaremos nuevamente la verificación.Los cables para aplicaciones fotovoltaicas tienen una designación, según normativa, que está compuesta por un conjunto de letras y números, cada uno con un significado.

La designación de los cables alude a una serie de características (materiales de construcción, tensiones nominales, etc.) que facilitan la selección del más adecuado a la necesidad o aplicación.

Este es un extracto de los contenidos incluidos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Fluido Caloportador

El fluido caloportador pasa a través del absorbedor y transfiere al sistema de aprovechamiento térmico (acumulador, interacumulador o intercambiador) la energía.

Los tipos más usados son:

* Agua natural: puede utilizarse en circuito abierto, cuando el agua sanitaria pasa directamente por los colectores, o en circuito cerrado (circuito independiente del consumo).

En el primer caso, el circuito solo puede estar constituido por materiales permitidos para la conducción de agua potable. En algunos países no se permite este sistema.

Habrá que considerar las características del agua, especialmente su dureza (cantidad de calcio y magnesio), que al calentarse produce una costra dura o sarro.

Esta costra acelera la corrosión, restringe el flujo y reduce la transferencia térmica. Los valores comienzan a ser problemáticos a partir de los 60 mg/l. Las aguas muy blandas también pueden ocasionar problemas debido a su corrosividad.

* Agua con anticongelante: para evitar los inconvenientes de congelación y ebullición del fluido caloportador el uso de los anticongelantes denominados “glicoles” es lo más generalizado.

Mezclados con el agua en determinadas proporciones impiden la congelación hasta un límite de temperaturas por debajo de 0º C según su concentración.

Por otro lado el punto de ebullición se eleva haciendo que el caloportador quede protegido contra temperaturas demasiado altas.

La elección de la concentración dependerá de las temperaturas históricas de la zona de ubicación de la instalación y de las características que aporte el fabricante.

Los glicoles más usados son el etilenglicol y el propilenglicol.

Resultado de imagen de tabla anticongelante solar

Características fundamentales de los anticongelantes:

• Son tóxicos: se debe impedir su mezcla con el agua de consumo haciendo la presión del circuito secundario mayor que la del primario, por prevención ante una posible rotura del intercambiador.

• Son muy viscosos: factor a tener en cuenta a la hora de elegir la electrobomba que suele ser de mayor potencia.

• Dilata más que el agua cuando se calienta: como norma de seguridad, cuando usamos anticongelante en proporciones de hasta un 30%, al dimensionar el vaso de expansión, aplicaremos un coeficiente de 1,1 y de 1,2 si la proporción es mayor.

• Es inestable a más de 120ºC: pierde sus propiedades por lo que deja de evitar la congelación. Hay algunos que soportan temperaturas mayores, pero son caros.

• La temperatura de ebullición es superior a la del agua sola, pero no demasiado.

• El calor específico es menor al del agua sola, por lo que habrá de tenerse en cuenta en el cálculo del caudal, condicionando el dimensionado de la tubería y del circulador.

Para calcular la cantidad de anticongelante que hay que añadir a una instalación, primeramente hay que consultar en la tabla de temperaturas históricas cuál es la mínima temperatura registrada en esa ciudad o localización.

Una vez que se conoce se va a la gráfica de los glicoles que suministra el fabricante y se traslada el valor para indicarnos cuál es el porcentaje.

* Líquidos orgánicos: existen dos tipos, sintéticos y derivados del petróleo.

Las precauciones mencionadas en el caso de los anticongelantes respecto de la toxicidad, viscosidad y dilatación son aplicables a los fluidos orgánicos. Debe mencionarse el riesgo adicional de incendio, pero también que son químicamente estables a temperaturas elevadas.

* Aceites de silicona: son productos estables y de buena calidad. Presentan las ventajas de que no son tóxicos y de que no son inflamables, pero los elevados precios actuales hacen que no sean muy utilizados.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Beca Solar

Si usted pertenece o representa a instituciones u organismos como los que se detallan a continuación, dispone de una beca solar para otorgar al / la beneficiari@ que el ente designe:

• Entidades académicas, educativas o de formación profesional

• Colegios o consejos profesionales

• Organismos gubernamentales de áreas medio ambiente y energías renovables

• Cámaras y asociaciones del sector energías renovables y medio ambiente

• Sindicatos, cámaras y asociaciones de los sectores electricidad y climatización

• Fundaciones con actividad en el sector medio ambiente

Para acceder a la beca solamente hay que difundir la formación e-learning solar de www.energiasrenovables.lat en los medios de comunicación habituales a través de los que la institución u organismo difunde este tipo de iniciativas.

Resultado de imagen de energía solar

Existe la posibilidad de recibir en metálico parte de la inscripción abonada por el/la alumn@ en caso de que la entidad beneficiaria de la beca esté abierta a una más estrecha colaboración.

Pueden enviarnos sus datos (nombre, correo electrónico, institución u organismo que representa) si desean ingresar como Invitado a la plataforma e-learning y tener acceso completo a la acción de formación.

Se trata de la formación en Energía Solar con la mejor relación calidad-precio del mercado.

Puede recibirse donde quiera que estés.

Solamente se necesita una computadora, smartphone o dispositivo móvil y conexión a Internet.

Resultado de imagen de cursos

Esta acción de formación brinda capacitación técnico – comercial en aplicaciones domésticas de energía solar con el objetivo de difundir la tecnología y desarrollar recursos humanos para su incorporación al mundo laboral y empresarial.

La 2da edición 2018 comienza el día 17 de septiembre y finaliza el día 26 de noviembre.

El plazo de inscripción es hasta el día 15 de septiembre inclusive en www.energiasrenovables.lat

La persona beneficiaria de la beca, si tiene menos de 35 años y vive en América Latina, finalizado el curso puede optar además a ser Country Manager Sopelia en su país de residencia.

Ya no tienes excusas, si quieres aportar tu rayito de sol para contribuir al desarrollo de la Energía Solar, tu partner es Sopelia.

Energía Solar Donde Quiera Que Estés

Muchas veces ha rondado en nuestra cabeza el propósito de incorporar la energía solar a nuestras habilidades profesionales, ámbito de negocio o vida personal.

Casi siempre nos hemos topado con la misma barrera: el tiempo.

Estamos trabajando o estudiando y se nos hace muy difícil disponer siquiera de unas pocas horas semanales.

Es raro encontrar ofertas de formación que no sean muy cortas (talleres de pocas horas) ni muy largas (de uno o más años de duración) y que a su vez tengan un precio accesible.

Si a esto le añadimos la dificultad de tener que trasladarnos, porque la mayoría se imparten de manera presencial, finalmente terminamos postergando una y otra vez este propósito.

En 2014 Sopelia impartió en colaboración con la Universidad Tecnológica Nacional de Mar del Plata (Argentina) el Curso de Técnico – Comercial en Energía Solar en la metodología de teleformación (distancia + presencial).

En 2016 Sopelia actualizó y dividió esa acción de formación en 2 cursos específicos:

* Técnico – Comercial en Energía Solar Térmica

* Técnico – Comercial en Energía Solar Fotovoltaica

2016-08-03 (1)

Los montó en una plataforma Moodle 3.1 y el resultado son 2 cursos en metodología e-learning.

Esto significa que puedes recibir formación en Energía Solar con la mejor relación calidad-precio del mercado donde quiera que estés.

Solamente necesitas una computadora, smartphone o dispositivo móvil y conexión a Internet.

Por tratarse de la 1era edición hay un 50% de descuento sobre el PVP.

Estos 2 cursos brindan capacitación técnico – comercial en aplicaciones domésticas de energía solar con el objetivo de difundir la tecnología y desarrollar recursos humanos para su incorporación al mundo laboral y empresarial.

Identificarás los aspectos más relevantes de la energía solar dentro del panorama energético actual.

Definirás, describirás y analizarás las características más importantes de la energía solar.

Conocerás la composición, comprenderás el funcionamiento, diseño y mantenimiento de instalaciones para llevar a la práctica proyectos de energía solar térmica y fotovoltaica.

2016-08-03

Es una capacitación dirigida a estudiantes y egresad@s de carreras técnicas, egresad@s de escuelas técnicas, ingenier@s, arquitect@s, profesionales e instaladores de sectores afines (climatización, electricidad, rural), personas con experiencia en energías renovables, profesionales del medio ambiente y particulares interesados en incorporar energía solar en sus vidas.

La edición 2016 comienza el día 19 de septiembre y finaliza el día 25 de noviembre.

Puedes inscribirte hasta el día 16 de septiembre inclusive en www.energiasrenovables.lat

Si tienes menos de 30 años y vives en América Latina, finalizado el curso, puedes aplicar para ser Country Manager Sopelia en tu país de residencia.

Y si tienes menos de 25 años y también vives en América Latina, puedes obtener una beca del 50% y, finalizado el curso, aplicar para convertirte en Becario Sopelia.

Ya no tienes excusas, Energía Solar donde quiera que estés con Sopelia.