Archivo de la etiqueta: energia solar termica en america latina

Fluido Caloportador

El fluido caloportador pasa a través del absorbedor y transfiere al sistema de aprovechamiento térmico (acumulador, interacumulador o intercambiador) la energía.

Los tipos más usados son:

* Agua natural: puede utilizarse en circuito abierto, cuando el agua sanitaria pasa directamente por los colectores, o en circuito cerrado (circuito independiente del consumo).

En el primer caso, el circuito solo puede estar constituido por materiales permitidos para la conducción de agua potable. En algunos países no se permite este sistema.

Habrá que considerar las características del agua, especialmente su dureza (cantidad de calcio y magnesio), que al calentarse produce una costra dura o sarro.

Esta costra acelera la corrosión, restringe el flujo y reduce la transferencia térmica. Los valores comienzan a ser problemáticos a partir de los 60 mg/l. Las aguas muy blandas también pueden ocasionar problemas debido a su corrosividad.

* Agua con anticongelante: para evitar los inconvenientes de congelación y ebullición del fluido caloportador el uso de los anticongelantes denominados “glicoles” es lo más generalizado.

Mezclados con el agua en determinadas proporciones impiden la congelación hasta un límite de temperaturas por debajo de 0º C según su concentración.

Por otro lado el punto de ebullición se eleva haciendo que el caloportador quede protegido contra temperaturas demasiado altas.

La elección de la concentración dependerá de las temperaturas históricas de la zona de ubicación de la instalación y de las características que aporte el fabricante.

Los glicoles más usados son el etilenglicol y el propilenglicol.

Resultado de imagen de tabla anticongelante solar

Características fundamentales de los anticongelantes:

• Son tóxicos: se debe impedir su mezcla con el agua de consumo haciendo la presión del circuito secundario mayor que la del primario, por prevención ante una posible rotura del intercambiador.

• Son muy viscosos: factor a tener en cuenta a la hora de elegir la electrobomba que suele ser de mayor potencia.

• Dilata más que el agua cuando se calienta: como norma de seguridad, cuando usamos anticongelante en proporciones de hasta un 30%, al dimensionar el vaso de expansión, aplicaremos un coeficiente de 1,1 y de 1,2 si la proporción es mayor.

• Es inestable a más de 120ºC: pierde sus propiedades por lo que deja de evitar la congelación. Hay algunos que soportan temperaturas mayores, pero son caros.

• La temperatura de ebullición es superior a la del agua sola, pero no demasiado.

• El calor específico es menor al del agua sola, por lo que habrá de tenerse en cuenta en el cálculo del caudal, condicionando el dimensionado de la tubería y del circulador.

Para calcular la cantidad de anticongelante que hay que añadir a una instalación, primeramente hay que consultar en la tabla de temperaturas históricas cuál es la mínima temperatura registrada en esa ciudad o localización.

Una vez que se conoce se va a la gráfica de los glicoles que suministra el fabricante y se traslada el valor para indicarnos cuál es el porcentaje.

* Líquidos orgánicos: existen dos tipos, sintéticos y derivados del petróleo.

Las precauciones mencionadas en el caso de los anticongelantes respecto de la toxicidad, viscosidad y dilatación son aplicables a los fluidos orgánicos. Debe mencionarse el riesgo adicional de incendio, pero también que son químicamente estables a temperaturas elevadas.

* Aceites de silicona: son productos estables y de buena calidad. Presentan las ventajas de que no son tóxicos y de que no son inflamables, pero los elevados precios actuales hacen que no sean muy utilizados.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Solar Térmica Latinoamérica

La energía solar térmica para aplicaciones domésticas es una tecnología madura que se ha desarrollado exitosamente en muchos países durante más de 30 años.

No se entiende muy bien el por qué de su escaso desarrollo en comparación con la energía solar fotovoltaica ya que casi duplica su rendimiento.

Es una tecnología relativamente simple que ya cuenta con pequeños y medianos fabricantes en países de la región como Argentina, Uruguay y Brasil. Sin embargo, no hay todavía una certificación a nivel regional como ocurre en Europa.

En el vecino país caribeño de Barbados el 80% – 90% de los hogares poseen equipos de energía solar térmica en sus techos. Este país se ubica en el top 5 mundial de capacidad instalada per cápita.

No hay datos fiables respecto de la capacidad instalada en Latinoamérica.

Los más recientes a nivel mundial datan de 2012 y estiman una capacidad instalada de 234 GWth. Brasil aparece entre los 7 primeros países con unos 4 GWth (2%).

El mercado regional latinoamericano se está desarrollando lentamente.

En paralelo, está surgiendo un incipiente marco regulatorio en materia de certificaciones que se basa principalmente en los marcos regulatorios de Europa y EEUU. La COPANT está trabajando en la unificación del marco regional de standards y certificaciones.

Una de las principales barreras para el desarrollo de la energía solar térmica son los importantes subsidios que algunos países de la región otorgan a las energías convencionales.

Profesionales y empresas del sector de la energía solar térmica de Latinoamérica y el Caribe se han reunido recientemente en San José, Costa Rica, para impulsar el desarrollo de esta tecnología en la región.

La convocatoria fue realizada por IRENA (International Renewable Energy Agency), OLADE (Organización Latinoamericana de Energía), ICE (Instituto Costarricense de Electricidad) y el Instituto Alemán de Metrología (PTB).

Según el Departamento de Innovación y Tecnología de IRENA, actualmente solamente se aprovecha el 3% del potencial solar térmico de la región.

La conclusión más importante a la que arribaron es que la región tiene un enorme potencial para el desarrollo de la energía solar térmica en los ámbitos residencial y comercial, pero la experiencia demuestra que para conseguirlo hay que fomentar la confianza en esta tecnología.

¿ Cómo se consigue esto ?

Las propuestas fueron:

1) Desarrollar mecanismos que aseguren la calidad de las instalaciones (standards e inspecciones)

2) Fomentar buenas prácticas entre profesionales y empresas del sector (test y certificaciones)

3) Implementar políticas de gobierno que impulsen el desarrollo genuino de esta tecnología

El análisis global de los programas de desarrollo de energía solar térmica estima una capacidad instalada mundial de 1.600 GWth en 2030 y unos 3.500 GWth en 2050.

¿ Será Latinoamérica un actor importante en este crecimiento de la capacidad instalada mundial ?

Para saberlo, en las próximas entregas analizaremos el sector solar térmico de cada uno de los países que componen la región.