El Regulador De Carga Solar

El regulador de carga es un equipo situado entre los módulos fotovoltaicos y las baterías como elemento de un sistema solar aislado.

La tensión de salida de los módulos se fija algunos voltios superior a la tensión que necesita una batería para cargarse. El motivo es asegurar que el módulo siempre será capaz de cargar la batería, incluso cuando la temperatura de la célula sea alta y disminuya el voltaje generado.

Esto ocasiona el inconveniente de que una vez que la batería llegue a su estado de plena carga, el módulo siga intentando inyectar energía produciendo una sobrecarga que, si no es evitada, puede destruir la batería.

El regulador es el encargado de alargar la vida de las baterías protegiéndolas frente a situaciones de sobrecarga, controlando las fases de carga en función de su estado e incluso llegándola a cortar en función de las necesidades de carga de las mismas.

Los reguladores pueden estar funcionando en una de las siguientes situaciones:

Estado de Igualación: igualación de cargas en las baterías, tras un período de carga bajo.

Estado de carga profunda: el sistema de regulación permite la carga hasta alcanzar el punto de tensión final de carga.

Estado de flotación: la batería ha alcanzado un nivel de carga próximo al 90% de su capacidad.

Estado de carga final y flotación: zona de actuación del sistema de regulación dentro de la Banda de Flotación Dinámica (rango entre la tensión final de carga y la tensión nominal + 10%).

Para saber qué regulador incorporar a un sistema fotovoltaico es necesario conocer algunos parámetros elementales.

El primero de ellos es la tensión nominal del sistema solar aislado. Esta tensión está definida por la tensión de las baterías y el campo solar fotovoltaico. Los valores típicos son 12, 24, 48 y hasta 60 voltios.

El otro parámetro es la corriente de carga de los módulos fotovoltaicos del sistema. Se recomienda multiplicar la corriente de corto circuito Isc en condiciones estándar por 1,25 para que el regulador siempre sea capaz de soportar la corriente producida por los módulos.

Conocida la tensión del sistema y determinado el valor de corriente, podemos elegir el regulador adecuado. Si todavía quedan dudas, podemos consultar con el departamento técnico del proveedor.

El diseño más simple es aquel que involucra una sola etapa de control. El regulador monitorea constantemente la tensión de batería pero controla la carga o la descarga, nunca las dos. Son los más económicos y los más sencillos.

Esto puede lograrlo abriendo el circuito entre los módulos fotovoltaicos y la batería (control tipo serie) o cortocircuitando los módulos fotovoltaicos (control tipo shunt).

Resultado de imagen de regulador de carga solar una etapa

En el caso de reguladores de carga que operan en dos etapas de control se controlan las dos funciones, tanto la carga como la descarga de la batería. Son más caros, pero son los más usados.

Los reguladores actuales introducen microcontroladores y controlan 3 y hasta 4 etapas de control.

Resultado de imagen de regulador de carga solar

Durante los últimos años se ha desarrollado una nueva generación de reguladores de carga cuya principal características reside en hacer funcionar al campo fotovoltaico en el punto máximo de trabajo y hacer que siempre rinda de forma óptima.

Estos reguladores se conocen como maximizadores de potencia o MPPT.

Otra de las ventajas que presentan estos equipos frente a los reguladores convencionales es la posibilidad de trabajar con una tensión diferente en el campo generador (paneles solares) y las baterías.

Esto influye directamente en poder seriar varios módulos elevando la tensión del sistema.

Trabajando con corrientes más bajas podemos reducir considerablemente las pérdidas por caída de tensión y utilizar secciones de cable más pequeñas y por lo tanto de menor precio.

Para la elección de un regulador convencional o un MPPT tenemos que valorar el sobrecosto que tienen estos sistemas frente a los beneficios que nos aporta por el aumento de rendimiento del sistema. En algunos casos el aumento de potencia anual puede llegar a ser hasta del 30 % frente al regulador convencional.

Resultado de imagen de regulador de carga solar MPPT

El regulador puede no resultar imprescindible en instalaciones en que la relación entre la potencia de los módulos y la capacidad de la batería es muy pequeña (p.e.: baterías sobredimensionadas por razones de seguridad) de manera que la corriente de carga difícilmente pueda dañar la batería.

Si la potencia del campo de módulos en W es menor que 1/100 la capacidad de la batería en W/h, puede no incorporarse regulador.

También puede prescindirse de regulador si el sistema cuenta con módulos solares autorregulados (no recomendables para climas extremos).

Este es un extracto de los contenidos incluidos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Herramientas Solares Gratuitas (III)

En Internet podemos encontrar herramientas de libre uso para el dimensionado de instalaciones solares básicas o de baja complejidad y para la estimación de determinados componentes o accesorios.

El equipo de investigación de Sopelia ha realizado una búsqueda y testeo exhaustivos a partir del cual se ha creado una nueva sección en la web corporativa, denominada Herramientas Solares Gratuitas.

Las herramientas seleccionadas fueron clasificadas en 4 categorías.

Hoy analizaremos la tercera de ellas: Solar Térmica.

En la primera categoría ya analizamos herramientas para obtener datos acerca del recurso solar y de las demás variables a considerar en la estimación de la potencia que proporcionará la instalación solar en nuestra localización.

En la segunda categoría hemos analizado herramientas para calcular la “carga”, es decir, la demanda energética a satisfacer.

Ahora vamos a analizar herramientas para dimensionar un sistema solar térmico y otras para estimar componentes individuales de un sistema.

El orden de las herramientas no es aleatorio. Hemos dado prioridad a las más intuitivas, las más universales y las que se pueden utilizar online sin necesidad de descarga.

Para esta tercera categoría nuestra selección es la siguiente:

1) Calculadora Solar Térmica

Herramienta de cálculo aproximado a partir de la que se obtiene automáticamente el presupuesto, datos de producción y estudio de rendimiento de la instalación.

A pie de página se puede encontrar una Guía de Navegación y los Manuales.

Resultado de imagen de calculadora solar térmica

2) Simulación para el Pre-diseño de una Instalación Solar Térmica

Aplicación online basada en el software TSOL que permite simular una instalación de energía solar para aporte a ACS y ACS + calefacción.

Disponible en idiomas alemán, inglés, español y francés.

Resultado de imagen de simulación solar térmica

3) Cálculo de la Fracción Solar

Programa de descarga gratuita desarrollado por el IDAE (Instituto para la Diversificación y el Ahorro de la Energía) y ASIT (la Asociación Solar de la Industria Térmica) que permite definir una amplia variedad de instalaciones solares introduciendo un mínimo de parámetros del proyecto, asociados a cada configuración del sistema, y de esta manera, obtener la cobertura solar que ese sistema proporciona sobre la demanda de energía para ACS y piscina.

Resultado de imagen de fracción solar térmica

4) Cálculo del Vaso de Expansión Solar

Herramienta desarrollada para calcular el volumen del vaso de expansión solar.

Se deben introducir los valores de Volumen (total circuito, colectores solares, tuberías), Temperatura máxima del sistema (ºC), Concentración de glicol (%), Altura entre el vaso de expansión y el punto más alto de la instalación (valor mínimo 1 Bar) y Presión tarado de la válvula de seguridad.

Resultado de imagen de cálculo vaso expansión solar

5) Cálculo Grosor Aislamiento Tuberías

Calculadora que permite estimar el grosor del aislamiento mínimo y más económico de las tuberías de agua.

Se deben introducir las variables Grado y Tamaño de Tubería, Material de Aislamiento, Humedad y Temperatura (Interna y Ambiente).

Resultado de imagen de aislamiento tubería solar

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Otros Colectores Térmicos

Ya hemos hablado de los colectores solares térmicos planos y de los de tubo de vacío.

Dentro de los colectores sin concentración se encuentran también los colectores de aire.

Son de tipo plano y su principal característica es tener como fluido caloportador el aire.

No tienen una temperatura máxima límite (los procesos convectivos tienen una menor influencia en el aire) y trabajan mejor en condiciones de circulación normal, pero en contraposición poseen una baja capacidad calorífica y el proceso de transferencia de calor entre placa y fluido no es bueno.

Su aplicación principal es la calefacción.

Exteriormente no es posible distinguir un colector de aire de uno plano de agua.

Es en el absorbedor donde se encuentran las mayores diferencias. El mismo presenta una forma rugosa y carece de la clásica parilla de conductos de los colectores de agua. El aire circula libremente por la superficie del absorbedor recogiendo el calor que éste transforma.

Al ser una tecnología poco difundida hasta ahora, no existe un modelo estandarizado de colector solar de aire, realizando cada fabricante su propio modelo.

Resultado de imagen de colector solar de aire

También existen los colectores solares térmicos cónicos o esféricos.

Su principal característica es que constituyen simultáneamente la unidad de captación y de almacenamiento.

Su superficie de captación es cónica o esférica con una cubierta de vidrio de la misma geometría. Con esta forma se consigue que la superficie iluminada a lo largo del día, en ausencia de sombra, sea constante.

Su instalación es sencilla, pero presentan problemas de estratificación del agua y la superficie útil de captación es pequeña.

Su aplicación principal es la producción de agua caliente sanitaria en viviendas unifamiliares y en climas muy benignos, ya que la gran superficie de almacenamiento, expuesta a la intemperie, propicia grandes pérdidas de energía.

Resultado de imagen de colector solar cónico o esférico

Por último, dentro de los colectores sin concentración, encontramos los colectores solares para climatización de piscinas exteriores.

Son de caucho, polipropileno o polietileno; e incorporan en su proceso de fabricación sustancias que los protegen de la tendencia natural de los plásticos a degradarse bajo la acción de los rayos ultravioletas.

También llevan otros aditivos para protegerlos de los agentes químicos empleados en la purificación del agua de las piscinas. Tienen una aceptable resistencia a las posibles heladas nocturnas.

Se usan principalmente para calentar el agua de las piscinas y así poder prolongar su uso durante varios meses más.

Estos colectores no cuentan con cubierta, ni con carcasa ni con material aislante. Están constituidos por la placa captadora desnuda. Esto es así porque la temperatura de trabajo en ningún caso va a superar los 30º C y a esta baja temperatura las pérdidas por radiación y conducción son muy pequeñas, permitiendo prescindir de cubiertas y aislamientos.

No es necesario utilizar ningún tipo de intercambiador de calor ni acumulador, porque circula el agua de la piscina directamente por los colectores.

Necesitan un bastidor porque generalmente no son rígidos, pero también pueden colocarse directamente sobre un tejado, cubierta, pérgola o incluso, sobre el suelo. Al ser flexibles absorben las irregularidades de la superficie sobre la que descansan.

Estos equipos gozan de una vida útil aproximada de 10 años. Necesitan poco mantenimiento y hay poco riesgo de corrosión, ya que son sintéticos.

Resultado de imagen de colector solar piscinas

El segundo gran grupo es el de los colectores solares con concentración.

Su uso más habitual no es a nivel doméstico sino en centrales termoeléctricas e instalaciones que trabajan a media y alta temperatura.

Estos colectores concentran la radiación solar que recibe la superficie captadora en un elemento receptor de superficie muy reducida (un punto, una línea).

Al ser el receptor más pequeño y la radiación concentrada, permite una mejor absorción de la energía solar.

Son capaces de proporcionar temperaturas por encima de los 300ºC con buenos rendimientos.

Las centrales de colectores de concentración generan vapor a alta temperatura con destino a procesos industriales y para producir energía eléctrica.

Hay colectores de concentración de varios tipos (torre, cilindro-parabólico, motor Stirling).

Pero todos ellos tienen en común que exigen estar dotados, para ser eficientes, de un sistema de seguimiento que les permita permanecer constantemente situados en la mejor posición para recibir los rayos del Sol a lo largo del día.

Uno de los inconvenientes de la mayoría de los colectores de concentración (y en especial del cilíndrico-parabólico) es que sólo aprovechan la radiación directa del Sol, es decir, que sólo aprovechan los rayos solares que realmente inciden sobre su superficie. No son capaces, por el contrario, de captar la radiación solar difusa.

Por ello, no resultan convenientes en zonas climáticas que, aunque reciben una aceptable cantidad de radiación solar, son relativamente nubosas. Sólo resultan realmente eficaces en zonas auténticamente soleadas.

Resultado de imagen de colectores solares con concentración

Este contenido fue extraído del Manual Técnico Comercial de Energía Solar Térmica y forma parte del e-learning Solar.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Solar Fotovoltaica Honduras

Honduras es un país del que habitualmente surgen noticias acerca de masacres, múltiples formas de violencia, corrupción, inestabilidad e intrigas políticas y en el que dos terceras partes de sus 8 millones de habitantes vive en condiciones de pobreza mientras el 10% que recibe los sueldos más altos acaparando el 42% del ingreso nacional y el 10% más pobre solo recibe el 0,17%.

Sin embargo, hay un sector en el que Honduras destaca a nivel regional: las energías renovables y, en especial, la energía solar.

El gobierno hondureño introdujo incentivos fiscales para instalaciones fotovoltaicas en 2013.

También se aprobó entonces un suplemento tarifario para los primeros 300 MW fotovoltaicos que entraran en operación antes del 1 de agosto de 2015.

En 2015, Honduras y Chile fueron los mayores mercados fotovoltaicos en América Latina.

A finales de 2017 el total de inversión de capital privado para la construcción de plantas de energía superó los U$D 1.600 millones.

La inversión se ha repartido en 12 plantas solares que se encuentran ya operativas y que suman unos 405 MW; el 39 % de la capacidad renovable del sector privado del país, que asciende a 1.047,07 MW.

En el cómputo general, el 61 % de la energía del país proviene de renovables, y en 2017 se convirtió en el primer país del mundo con un 10 % de energía solar en su mix eléctrico.

Resultado de imagen de parque solar nacaome

El proyecto más emblemático es el Parque Solar Nacaome-Valle, que genera la energía que consumen unas 150,000 familias hondureñas cada día.

Cuenta con 480.480 módulos con capacidad de producir hasta 125 MW de potencia pico en corriente alterna (CA).

Fueron necesarios más de 1.000 contenedores de material, U$D 240 millones en inversión y la ayuda de más de 1.200 empleados que cambiaban turnos sin parar, para construir y comenzar a operar la planta en menos de 2 años.

Los módulos fotovoltaicos reciben la radiación para generar entre 600 y 850 V, en forma de CC. Con el uso de inversores, esta energía se convierte en AC, la cual pasa a través de los transformadores para elevar su Voltaje a 34,5 kV y distribuirse así alrededor del parque.

Finalmente, esta corriente se transmite hacia la subestación eléctrica de la planta, donde el voltaje se eleva a 230 kV para poder transmitirse a todo el país por medio de la Red Eléctrica Centroamericana, que llega de El Salvador, pasa por Honduras y va hacia Nicaragua.

La planta solar de Nacaome ha sido un motor de desarrollo económico, científico y académico para el pueblo de Honduras y una obra monumental de ingeniería que ha puesto a la nación centroamericana en el mapa internacional de la industria energética sostenible.

Imagen relacionada

La construcción del parque solar Los Prados, que tendría 53 MW y debería haber entrado en operación a finales de 2016, está detenida por las protestas de habitantes de la zona que teme posibles daños a sus personas ocasionadas por el parque.

Actualmente se busca una solución entre las autoridades y los pobladores, ya que todo está listo para la ejecución de la obra, pero las noticias no son alentadoras.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.