Solar Fotovoltaica Cuba

A partir de la desaparición de la Unión Soviética y la intensificación del bloqueo impuesto por EEUU, Cuba ha realizado grandes esfuerzos para conseguir su suministro energético.

Entre sus planes incluyó a la energía solar, fundamentalmente en zonas de difícil acceso donde no llega el sistema eléctrico nacional (consultorios médicos, hospitales rurales, círculos sociales, salas de televisión y escuelas).

En los consultorios médicos se instalaron equipos de 400 W de potencia para aportar energía a 1 refrigerador, 12 lámparas de 15 W, 1 televisor y 1 equipo de radio para comunicarse con los demás consultorios y hospitales.

En las escuelas se instalaron equipos solares para aportar a sistemas de iluminación, televisores y computadoras.

El gobierno construyó salas de televisión en poblados que no tenían electricidad que fueron equipadas con sistemas solares. Cada sala de televisión cuenta con 1 módulo solar, 1 televisor, 1 video y 30 o 50 sillas según la densidad poblacional. La inversión fue de aproximadamente U$D 4500 por sala.

La primera central fotovoltaica a gran escala tiene instalados más de 14.100 módulos de fabricación nacional. La planta está ubicada en la provincia de Cienfuegos. El parque, que se comenzó a construir en 2012, conecta al sistema eléctrico nacional 2,6 MW.

También se han instalado centrales fotovoltaicas conectadas a la red eléctrica en las provincias de Guantánamo, Santiago de Cuba y Santa Clara. Ésta última puede producir energía eléctrica como para abastecer diariamente a unas 750 viviendas y en pleno rendimiento puede aportar al sistema eléctrico nacional unos 962 kW.

El Parque solar fotovoltaico de Pinar del Río ha conectado su primer MW, de los 3 previstos, al sistema eléctrico nacional. Esta instalación, ubicada en la zona de Cayo Cana, aportará energía a algunos pozos que abastecen de agua a la cabecera provincial y a unas 8.000 personas.

En la actualidad ya están activos más de 15 parques fotovoltaicos, en los cuales cada MW instalado, en promedio, puede producir 1,5 GW/h al año; ahorrándole al país 430 toneladas anuales de combustible.

Este salto a las centrales de gran escala demuestra el interés del gobierno por aumentar el uso de la energía solar y la oportunidad de explotar un recurso abundante, ya que el promedio de radiación solar en Cuba es mayor a 1.800 kW/h/m2 al año.

Además, los módulos se fabrican en una factoría ubicada en la provincia de Pinar del Río. La industria local lleva a cabo importantes mejoras tecnológicas en la línea de producción, que alcanzó en 2015 los 60.000 módulos concentrándose en la fabricación de paneles de 250W.

Otra muestra del interés por la energía solar es la decana Cátedra de Energía Solar, que fundada el 6 de septiembre de 2001 en la Universidad de La Habana, reafirma el impulso en el uso de las energías renovables en Cuba y en la que juega un papel destacado la energía fotovoltaica.

Energía solar en Latinoamérica con Sopelia

Cuál es el mejor colector solar?

Qué cualidades se deben tener en cuenta al seleccionar un colector solar térmico?

Son dos:

1- Sus cualidades constructivas. Determina la durabilidad y la posibilidad de integración arquitectónica.

2- Sus cualidades energéticas. Determina la rentabilidad económica.

En algunos aspectos ambas cualidades se interrelacionan.

Un buen colector solar es aquél que posee ambas cualidades bien equilibradas para la aplicación deseada.

De nada sirve un colector solar con un aporte energético extraordinario si fallan sus cualidades constructivas, degradándose con rapidez, ya que la rentabilidad de estas instalaciones se mide a medio plazo.

De nada sirve un colector solar con unas cualidades constructivas extraordinarias si fallan sus cualidades energéticas, ya que, simplemente, no está cumpliendo con su cometido principal.

Al observar la curva de rendimiento de un colector solar, vemos que el mismo depende de una variable que es la temperatura T, la cual a su vez depende de la variable radiación solar I, de la variable temperatura de entrada Te del fluido al colector solar y de la variable temperatura ambiente Ta.

Es decir, el rendimiento de un colector depende:

– por un lado de las condiciones climatológicas, dadas por I y por Ta,

– por otro lado de las condiciones de trabajo, es decir, de para qué se usen, dada por Te.

Por ello, al seleccionar un colector hay que considerar:

1) La aplicación que va a tener (solo ACS, solo calefacción, ACS y calefacción, climatización de piscinas, etc.).

2) Las condiciones climáticas y de radiación de la localización de la instalación.

3) Las curvas de rendimiento de los modelos.

4) El precio del equipo.

5) La rentabilidad económica (en base puramente a la relación entre precio y rendimiento) y el plazo de recupero de la inversión.

6) Su calidad constructiva.

Es necesario equilibrar calidad constructiva con calidad energética.

Existe un debate abierto entre los profesionales sobre cuál de las dos tecnologías de colectores más utilizadas es la más adecuada: colector plano o de tubo de vacío ?

Los que optan por los colectores de tubo de vacío los consideran más avanzados y sostienen que en el futuro esta tecnología terminará por desplazar definitivamente a los colectores planos debido a su mejor rendimiento.

La brecha del mayor costo de los colectores de tubo de vacío con respecto a los planos se ha ido reduciendo y ya podemos encontrar colectores de ambas tecnologías al mismo precio.

Los partidarios de los colectores de tubo de vacío consideran que optar por ellos se compensa, ya que al ofrecer un mayor rendimiento por m2 será necesario adquirir menos colectores.

Esto no es necesariamente así, sobre todo en las pequeñas instalaciones:

En una pequeña instalación que solo aporta a ACS con condiciones climáticas y de radiación buenas, será mayor el rendimiento y la rentabilidad de los colectores planos.

A medida que aumenta el tamaño de la instalación, el mayor rendimiento del colector de tubo de vacío compensará la menor superficie absorbedora.

Hay que tener también en cuenta la facilidad de integración en edificios de los colectores de vacío de flujo directo (U-Pipe) que se pueden colocar en vertical cubriendo una fachada o balcón.

En definitiva, un profesional adecuadamente formado debe valorar atendiendo a los siguientes factores la elección de una u otra tecnología:

• Los requerimientos específicos de la instalación

• La climatología del lugar en cada estación del año

• Su experiencia previa

• La disponibilidad de presupuesto.

Puedes encontrar contenidos como este en el Manual Técnico – Comercial de Energía Solar Térmica de Sopelia

Solar Térmica Cuba

La población cubana destina entre 529 y 791 GWh/año (un 6% de la energía eléctrica) al calentamiento de agua.

Considerando el estado técnico de las viviendas y la estabilidad del servicio de agua, 1 millón de familias cubanas podrían recibir el servicio de agua caliente empleando energía solar térmica.

El primer anuncio escrito en lengua española sobre tecnología solar térmica comercial, publicado en un medio de difusión masiva, se realizó en un periódico cubano en la década de 1930.

Los equipos introducidos en aquella época procedían principalmente de EEUU y su elevado costo hizo que solo estuviesen al alcance de las clases económicamente más favorecidas del país.

En 1978 se creó un polígono para evaluar equipos solares térmicos y en 1987 se aprobó la Norma Cubana para la instalación de estos sistemas.

En ese período se desarrollaron los primeros modelos adaptados a las condiciones climáticas de la isla y en 1979 se obtuvo la patente cubana de un equipo solar térmico compacto.

Entre 1982 y 1991 se construyeron e instalaron más de 13.000 sistemas solares térmicos de calentamiento de agua en círculos infantiles y otras entidades sociales. La mayoría de estos sistemas están hoy fuera de servicio por problemas tecnológicos y de mantenimiento.

De 1992 a 2006 se instalaron alrededor de 4.000 colectores planos y equipos compactos, muchos de estos importados, y se realizaron esfuerzos para fabricarlos en el país.

En 2007 se adquirieron equipos de tubo de vacío a la República Popular China con el propósito de realizar una prueba piloto.

Aproximadamente el 85% de la capacidad instalada corresponde al sector turístico hotelero.

También se utilizan equipos solares térmicos para aplicaciones como el secado de productos agrícolas e industriales.

Los centros de investigación en energía solar llevan más de 2 décadas trabajando en el desarrollo de modelos y tecnologías de secado solar para maderas, plantas medicinales, granos, semillas y otros productos que ya permiten el uso industrial de estas cámaras proporcionando un gran beneficio económico.

Se ha logrado también el desarrollo de secadores solares con tecnologías muy avanzadas para el curado y secado de tabaco.

Los mencionados centros también trabajan en la utilización de energía solar en cámaras de clima controlado para la producción de vegetales y semillas de alta calidad, la refrigeración y la climatización. La investigación se centra en la producción de patatas, tomates y otros productos que actualmente Cuba se ve obligada a importar.

Proyectos y negocios de energía solar en Cuba y Latam con Sopelia

Creatividad Solar

Cuando Federico Redin atendió la llamada telefónica en su oficina de Bahía Blanca (Argentina) se puso contento porque era para solicitar sus servicios de instalación en un nuevo proyecto de energía solar.

Pero cuando llegó a la vivienda dónde se localizaría el proyecto, se dio cuenta de que la instalación tenía cierta complejidad.

Se trataba de una piscina interior de uso continuo con baño, vestuario y cocina.

La piscina estaba cerrada de manera rústica con paredes de ladrillo macizo, aberturas de aluminio con DVH de baja calidad en el cerramiento y techo de policarbonato transparente. Todo un desafío.

Piscina

Luego de la visita, quedó dando vueltas en su cabeza qué solución adoptar para configurar la instalación de manera óptima.

Apelando a la creatividad característica de los argentinos, Federico adoptó una solución poco convencional: climatizar la piscina mediante suelo radiante (tanto en las zonas de tránsito del recinto como en el vaso de la piscina misma).

De esta forma se lograría climatizar la piscina independientemente del tipo de agua que contenga el vaso y de una forma más eficiente, dado que la climatización convencional de piscinas tiene la inercia negativa del agua en movimiento.

Al calentar el agua de la piscina con una caldera convencional se pone en movimiento el agua con la misma bomba de la piscina, provocando el enfriamiento de ésta por dicho movimiento; lo que disminuye el rendimiento global de la instalación. Por ello se necesita una fuente de energía más potente y con más reacción térmica.

Sabemos que utilizando energía solar no contamos con una gran reacción térmica, es decir, que el tiempo de calentamiento es más lento.

Al climatizar la piscina con suelo radiante, el agua se caliente a través del hormigón, que una vez en régimen posee más inercia térmica y permite a la energía solar mantener ese régimen.

El “vaso” radiante de la piscina y el suelo de la zona de tránsito del recinto reciben aporte de una caldera de gas convencional que se encarga de poner en régimen la instalación y de 7 colectores heat pipe que proveen directamente al circuito (sin intercambiador) de fluido caloportador que transfiere calor en horas de sol.

Colectores I

La temperatura es regulada con una válvula termostática mezcladora para no degradar el suelo con altas temperaturas.

El sistema cuenta con un termostato ambiente para las zonas de tránsito y un termostato para el agua de la piscina.

Luego se discrimina la temperatura del ambiente o del agua con cabezales eléctricos ubicados en el colector del suelo radiante, que separan la parte del vaso de la piscina y de las zonas de tránsito del recinto.

La piscina tiene un sistema de cloración natural por sal (agua salada al 5%) lo que permite evitar el uso de cloro.

Caldera

Al haber 2 circuitos independientes (el del vaso de la piscina y el del suelo radiante), protegemos a la caldera de calentar agua salada, lo que en poco tiempo causaría daños severos e irreversibles en la misma.

Federico Redin es asesor experto en instalaciones en Sopelia.

Cuba Solar

Cuba es uno de los últimos bastiones que se resiste a adoptar el sistema capitalista.

Esto implica prácticamente la inexistencia de iniciativa privada y como consecuencia de esto una gran deficiencia en infraestructuras.

Lo más habitual es hacer una asociación simplista de ideas de «pocos recursos = deficientes capacidades».

Nada más alejado de la realidad.

Como ocurre en otros ámbitos (p.e.: medicina), en el sector de la energía solar en Cuba hay gente con mucha experiencia y un buen know-how.

Por un lado tenemos la importancia que el cubano da a «tener palabra» y por otro lado tenemos los “tiempos” en los que se mueven las cosas en Cuba y el respeto que hay que tener a la cultura libre de prejuicios políticos.

Cuba necesita dar pasos firmes hacia la independencia energética implementando una serie de iniciativas que sean una apuesta de futuro para contrarrestar los problemas que tiene para abastecerse de petróleo y el perjuicio que esto supone para la economía del país.

En 2012 Cuba poseía en su matriz energética un 4 % de energía renovable y las expectativas son de cubrir el 10% con fuentes de energía limpias para el año 2020.

El uso de fuentes renovables ha ayudado a reducir la presión de las comunidades sobre el ecosistema y la deforestación que provoca el uso masivo de la leña.

En el país actualmente operan 13 parques eólicos y 19 plantas bioeléctricas que aportan 633 y 755 MW, respectivamente, al sistema eléctrico nacional.

La soberanía energética perseguida resulta factible con un potencial de 1.100 MW instalables de energía eólica y el alto grado de radiación solar recibido por su territorio que, ubicado en el trópico de Cáncer, alcanza los 5 kWh/m2 diarios de radiación (1.825 kW/m2 al año).

Las primeras experiencias en incorporación de energía solar han estado unidas a proyectos de electrificación rural. Desde finales de los años 80 y principios de los 90, se inició un programa con el objetivo de llevar electricidad a todas las regiones rurales montañosas y de difícil acceso para mejorar la calidad de vida de sus habitantes.

Tras el deshielo de relaciones iniciado en diciembre de 2014 por Raúl Castro y Barack Obama y con el proceso de reformas iniciado por Castro en 2008 (creación de la zona especial de desarrollo Mariel y la nueva Ley de inversión Extranjera) el nuevo clima económico propicia el desarrollo de las energías renovables con la presencia de algunas empresas con capital 100% foráneo.

El previsto incremento en la demanda turística para la isla va a producir la activación de la construcción, especialmente de hoteles, impulsando la participación del sector industrial en el desarrollo de las energías renovables.

Cuba estableció el objetivo de 700 MW fotovoltaicos para alcanzar un 24% de renovables en 2030, reducir sus costes energéticos y diversificar su matriz energética actual en la que el 94% de la producción eléctrica se cubre mediante combustibles fósiles (aproximadamente 50.000 barriles de crudo diarios de producción propia + 75.000 importados).

El Fondo para el Desarrollo Abu Dhabi permitirá a Cuba diversificar su matriz energética y potenciar las energías renovables, especialmente la solar y la eólica.

Este fondo, que proporciona apoyo financiero a países en desarrollo, dará soporte a un proyecto de generación de energía solar de 10 MW, que incrementará en un 50% la potencia instalada actual.

También promueve un proyecto progresivo hasta 2017 para desalinizar agua incorporando en las nuevas plantas tecnología fotovoltaica y mini eólica.

Negocios en energía solar en Latinoamérica con Sopelia