Tag Archives: renewable energy

Solar Bolivia

Bolivia has a high energy potential, both for traditional and alternative energy.

Given its geological nature, the country produces more natural gas than oil (62% of total liquids produced from condensed).

Its natural gas reserves are the second largest in South America (after Venezuela), but considering those that are liquids free, they are the first. Besides, it is expected that they will increase by 200 to 300 trillion cubic feet.

This is the basis for the Bolivian economy. The country has export contracts with the countries that surround it. For example, Brazil has a contract for 30 million cubic feet per day for 20 years.

The power sector accounts for 63% of natural gas sales.

The electricity generated in Bolivia comes from hydroelectric plants (35%) and thermal power stations (65%).

The National Interconnected System (SIN) is 90% composed by the main centers of production and consumption (La Paz, Cochabamba, Oruro, Potosi, Chuquisaca, Beni and Santa Cruz) and by isolated systems in smaller cities and towns that complete the remaining 10% of the national electricity market (Department of Pando).

Bolivia is determined to change its energy matrix, which currently is based on thermal generation.

Authorities have repeatedly pointed that their goal is to achieve a mix of 70% of power generation by hydroelectric or from alternative sources such as wind and solar, and limit thermal to the remaining 30%.

Therefore it targets to incorporate around 183 MW of renewable energy by 2025.

Two thirds of Bolivia, whose latitudinal position is between the parallels 9º 40′ S and 22º 53′ W, are situated within the range of greater solar radiation.

Thanks to this situation, the country has one of the highest levels of solar intensity in the region.

Solar incidence in the country reaches an annual average of 5,4 kWh / m² per day of intensity and 7 h/day of effective insolation.

However, perhaps because of the high availability of natural gas, Bolivia currently has no regulations and legislation that fosters sustainable development for solar installations.

Solar PV Latin America

Latin America generates about 7% of the world’s electricity and non-traditional sources account only for 6% of the energy mix.

It is expected that by 2050 over 20% of the electricity generated in the region will come from non-hydro renewables.

May the contribution of photovoltaics be significant?

This technology has great potential in the region, but is still marginalized to the background among the countries’ energy choices and many times what is done about it is just to “stand” and very little is accomplished.

Compared to the rest of the world, the rate of solar photovoltaic energy implementation in Latin America is very low.

Annually the installation of about 100 GW of solar photovoltaic energy is expected worldwide and usually only 1% corresponds to this region.

However, the fact of not having been one of the pioneer regions where the development of this technology began will allow learning from other regions or countries mistakes.

We must distinguish between solar industrial development (manufacturing of modules and other components) and solar energy (solar electricity).

Solar industrial development in the region has difficulties with the sharp drop in solar modules’ prices.

In contrast, solar electricity production is favored by the fall in modules prices and makes solar photovoltaic energy more competitive.

The average cost of 1 W of installed solar PV has dramatically dropped in recent years and most projections indicate that this trend will continue. The underlying costs associated with solar photovoltaic energy will also continue to decline.

PV installed capacity of Latin American countries has always been oriented to isolated applications to meet the needs of rural populations without access to electricity network.

Only after 2014 solar photovoltaic projects began to attract capital.

Latin America has 51 solar photovoltaic plants in operation and 625 MW of installed PV in 2014, compared to 133 MW in 2013. They have announced 23 GW projects, 5,2 GW in contracts, 1,1 GW under construction and 722 MW in operation.

From GTM Research consultancy recent studies show that the installed capacity in MW has increased 370% in 2014 and is expected to rise 237% in 2015.

This figure could be revised downwards following the price collapse that has rocked the oil industry and the commodity sector in recent months.

Today, in Latin American countries with good levels of radiation and without large subsidies in the energy market, the model of solar PV is self-sustaining.

In some cities in Mexico, Brazil, Chile and Peru, the solar PV cost is situated very close to grid parity.

Countries like Costa Rica, Guatemala, Mexico, Panama, Dominican Republic and Uruguay already have national laws and regulations in place for connecting photovoltaic generators under the net metering system.

The most suitable places to locate large plants are the deserts near the Pacific coast and northeastern Brazil.

Over the next 20 years it is expected that the investment in solar photovoltaic energy per year will reach about U$S 100.000 million worldwide.

A forecasted development of 3,5 GW is estimated in Latin America by 2016.

Could this be possible?

To know it, we are going to do a country-by-country analysis because there are very different realities.

Solar Thermal Latin America

Solar thermal energy for domestic applications is a mature technology that has been successfully developed in many countries for over 30 years.

It is not well understood why its underdeveloped compared with photovoltaics while almost double its performance.

It is a relatively simple technology that already has small and medium manufacturers in countries of the region such as Argentina, Uruguay and Brazil. However, there is still no certification at regional level as in Europe.

In the Caribbean nation of Barbados 80% – 90% of households have solar energy equipment on their roofs. This country ranks in the top 5 global installed capacity per capita.

There are no reliable data concerning the installed capacity in Latin America.

The most recent global estimate dating from 2012 and informs an installed capacity of 234 GWth. Brazil is among the top 7 countries with about 4 GWth (2%).

The Latin American regional market is slowly developing.

In parallel, there is an emerging incipient regulatory framework for certifications that are mainly based on regulatory frameworks of Europe and the US. COPANT is working on the unification of the regional framework of standards and certifications.

One of the main barriers to the development of solar thermal energy are important subsidies that some countries in the region granted to conventional energy.

Professionals and companies in the solar energy industry of Latin America and the Caribbean met recently in San Jose, Costa Rica, to promote the development of this technology in the region.

The meeting was made by IRENA (International Renewable Energy Agency), OLADE (Latin American Energy Organization), ICE (Instituto Costarricense de Electricidad) and the German Metrology Institute (PTB).

According to the Innovation and Technology Department of IRENA, currently the region only takes advantage of 3% of its solar thermal potential.

The most important conclusión we arrived is that the region has great potential for development of solar energy in residential and commercial areas, but experience shows that to achieve this, we must build confidence in this technology.

How is this achieved ?

Proposals were:

1) Develop mechanisms to ensure the quality of the facilities (standards and inspections)

2) Encourage best practices among professionals and companies (testing and certification)

3) Implement government policies that promote genuine development of this technology

The global analysis of the development programs of solar thermal energy estimates a worldwide installed capacity of 1,600 GWth in 2030 and 3,500 in 2050 GWth.

Will be Latin America an important player in this global installed capacity growing ?

To know that, in next deliveries we will discuss solar thermal sector of each country in the region.

Solar Energy in Latin America

Before evaluating the solar potential of the region, we will expose some macro variables.

Latin America includes Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Dominican Republic, Uruguay and Venezuela.

It has 22.222.000 km2 (approximately 13.5% of the planet’s land surface) and more than 600 million inhabitants.

The region has a remarkable political and economic diversity and is unstable because of the continued monetary policy focus shift.

Currently, in Latin America 3 types of economic systems are recognized.

The capitalists, with open economies that rely on the free market and free trade agreements. Some of these countries are Peru, Chile, Mexico, Colombia, Panama and Costa Rica.

Countries that, even though argue having an open structure to the world, are clearly protectionists, with a social market or mixed economy. Some of these countries are Argentina, Uruguay, Brazil, Ecuador, Bolivia and Paraguay.

Finally there are a few countries that maintain closed economies with little regard for free market and with a clear tendency to Marxist models. This is the case of Cuba, Venezuela and Nicaragua.

The largest economies by GDP are Brazil, Mexico, Argentina, Colombia and Venezuela.

The most developed in terms of GDP per capita are Chile, Argentina and Uruguay’s economies.

Let us analyze the solar resource available in the region.

Solar energy is evenly distributed, since much of the region lies within the so called ‘Sun Belt’ region presenting the highest solar radiation; with the exception of specific sites, it is a predictable and reliable resource.

What is the main advantage of solar energy over other renewable energies?

Solar energy has a higher degree of integration into the urban environment.

Roof facilities take advantage of idle surfaces to generate clean energy. The country that manages to focus its efforts on such facilities’ development will have the key to its own, and its inhabitants’, energy sovereignty.

Another important factor is that solar installations can be performed by local workers, reducing dependency on technology developers and equipment suppliers (mostly manufactured outside the region). This eliminates the link between the equipment’s sale, installation, commissioning, operation and maintenance; unlike it happens with other renewables.

With some of the best solar resources in the world, Latin America has great opportunities.

Some reasons to be optimistic:

1. Good levels of solar radiation in the region

2. Sustained downward trend in solar systems components’ prices

3. Technology with high potential for generating local employment

4. Increasing public environmental awareness

5. Convenience for many countries to reduce dependence on oil and its derivatives

6. Political will is evidenced by governments of some countries in the region

And some outstanding issues:

1- Investment in modern interconnected transmission networks infrastructure and bidirectional measurement equipment

2- A larger financial market to support solar technology long-term development with loans

3- Legal uncertainty and economic instability in some countries of the region

In upcoming deliveries we will analyze the thermal and photovoltaic solar energy domestic applications’ situation in the region.