Chile Solar PV

Northern Chile is the region with the highest solar radiation in the world.

Photovoltaic technology was introduced in the 90s in the context of rural electrification programs.

In the area of large-scale power generation it has created in recent years a legal and economic framework that has strongly promoted its development.

The speed with which the country progressed has positioned itself as region leader, over Mexico and Brazil, in terms of growth.

Chile had 5 MW in 2012 and began 2013 with 11 MW of installed solar capacity.

The country led the region photovoltaic sector in 2014 with more than ¾ of the total. Only in the fourth quarter of that year Chile installed twice the total installed in Latin America throughout 2013.

In September 2015, 741 MW of photovoltaic energy stations were in operation, generating 131 GW/h and covering 2.3% of electricity production in the country.

A total of 2.11 GW in photovoltaic projects are under construction and green light was given for 9 other photovoltaic projects totaling 793 MW.

Together, the photovoltaic projects with environmental authorization totaled 10.33 GW by 2015.

However, the industry estimates that in 2015 only 1 MW small scale photovoltaic projects will be installed product of the entry into force of the distributed generation law.

The pessimistic diagnosis is because there are no conditions to give a true development, as with large-scale projects.

To achieve a massification of distributed photovoltaic systems is necessary to build trust with clear information; improve the categorization of authorized installers system; simplify the application, registration, change of meter and procurement process; equal rate of energy consumed with injected; facilitate access to financing.

Law 20.571 was enacted in March 2012. It was named “Net Billing” because the electricity consumed and injected are measured at different rates.

For a BT1 client means that the surplus will be assessed at 50% of the value at which buys electricity to the distribution company. This differs from the original law draft, which proposed a fee equivalent to the cost of the distribution, less 10% for administrative, billing and maintenance costs of distribution lines.

Distributed generation should really work with a law change towards a Netmetering system, following the trend of countries and states in which there have been important developments in distributed photovoltaic.

With the Net Billing current system the pay back can be more than 10 years for facilities located on RM, while with a Netmetering system could be considerably reduced.

Chile Solar Thermal

In Chile the energy business understood has caused solar thermal for domestic applications is not subsidized, while maintaining support for hydrocarbons.

It is easier to push price increases in residential electricity rates, which can not access direct contracts and are subject to pool generation system with intermediaries.

The 2014 budget left out solar subsidies for social housing infrastructure, despite the need to extend the Law 20,365 and that this be included in the raised budget.

As the law was not extended, 2 million Chileans were left without the possibility of having free hot water in their homes and solar thermal industry begins again fojas 0 after a boom.

Law 20,365 sought to create a natural market to make unnecessary the subsidy after 5 years, but as it only lasted two years, failed to meet that goal.

On Tuesday 12 January, 2016 the project to extend the law 20,365 and make a direct subsidy for solar thermal systems in social housing exceeded its final step in Congress. Only the law publication in Official Journal is needed to take effect.

For solar thermal industry has been too long waiting time of this law.

The effects of this extension will be diluted again if long term policies in favor of maintaining incentives for solar thermal energy by individuals and businesses are not adopted.

Not only is important solar thermal energy development in the residential sector. Copper mining, dairy products, wines, concrete, bakeries, sawmills and paper mills also present opportunities for incorporating solar thermal energy.

Most industries with potential to incorporate solar thermal energy identified are in the RM (middle región), with industrial plants concentration.

Implementation opportunities in the region VIII are scarce because solar thermal energy is currently not competitive with the use of biomass fuel, abundant in this region.

There are compelling reasons to encourage the development of solar thermal systems:

* It is key for real estate who want to get the “Energy Housing Seal”

* It is estimated that each housing with thermal solar equipment will stop producing 16 tons of CO2 over its lifetime

* Capacity building and business and technological development of the sector

* Each peso that the state invests has a high social returns

Solar Chile

The successful reform of Chilean electricity sector, in the first half of the 1980s, led to vertical and horizontal unbundling of generation, transmission and distribution; and large-scale privatization.

The electricity sector was based on thermal and hydroelectric power generation.

After natural gas cuts from Argentina, in 2007 Chile began construction of its first liquefied natural gas regasification plant in Quintero to ensure supply.

In addition, new hydroelectric and coal plants were built.

However, renewable energies development achieved in recent years is really important.

10% of the total energy matrix was of renewable energy in 2015. Only five years earlier, the figure was 1.47%.

In July 2015 the electricity generation was 6,163 GWh, 617 GWh attributable to renewable energy (14% solar).

As if this were not enough, between 2015 and 2017 Chile will double its current renewable generating capacity with 2.4 GW of projects in execution (the current renewable installed capacity is 2.2 GW), surpassing its target for 2025 of 20% of clean energy generation.

The Roadmap notes that in 2050 at least 70% of the energy matrix must come from renewable sources, focusing on solar and wind energy and complemented by new hydroelectric developments.

Projections indicate that by 2030 the renewable contribution could reach between 35% and 40%.

The Chilean government gave permission to build the world’s largest solar energy storage plant in the northern region of Atacama, which will provide 260 MW to the central grid.

Copiapo Solar, with an investment of U$D 2,000, incorporates a hybrid system of concentration towers equipped with molten salt thermal storage in combination with photovoltaic solar modules and begin operating in 2019.

The other side of the coin is the lack of a more concrete and proactive stance in relation to distributed generation and solar thermal solutions that have a positive and direct impact on the welfare of the community and SMEs, in addition to democratize the energy sector.

The most worrying situation is for solar thermal industry with little development since, in December 2013, the law that gave momentum ceased to exist.

Concerning solar photovoltaic small generation development, the expected Law 20,571 into force since October 2014, which allows small generators (less than 100 KW) to pour their surplus generation to the grid, did not have the expected results.

At mid-2015 there were only one connection finalized and 202 were pending.

The country wants to be solar leader and does not encourage its widespread use. It sounds contradictory.

This is because Chile is still focused on the electricity sector old model, which consists of large power plants and classical transmission and distribution needs associated.

We sense that modern power sector model is based on three pillars: energy efficiency, distributed generation and renewable energy.

The great potential of small-scale solar technologies are not yet taking advantage because more powerful incentives are needed to accelerate its development.

Soft loans for individuals and small businesses and a more attractive Net metering system could generate a huge impact and make Chile a self-generation leader.

Regarding the business sector, solar photovoltaic has dominance over thermal. Most companies are small and usually not exclusively dedicated to solar energy business.

Brazil Solar Photovoltaic

Photovoltaic solar energy in Brazil has taken important steps in self-sufficiency and net balance.

Distributed generation is entering the country more easily than large-scale facilities.

It is betting on a model of small and medium power generation plants for households and businesses consumption.

This is excellent news.

In 2012 standards were approved to reduce barriers for distributed generation and small power facilities for micro (up to 100 kW) and minigeneración (100 kW to 1 MW).

Since its publication in 2012 until March 2015, 534 systems (500 photovoltaic, 19 wind, 10 solar / wind hybrid, 4 biogas and 1 hydraulic) were installed.

In late 2015 the government launched the ProGD program that includes tax exemptions and special credit lines. It expects to reach 23.5 GW of installations, most photovoltaic, in 2030.

To achieve this goal, barriers to grid connection should be reduced, standards system power compensation should be harmonize with the terms of the offer, target audience should be increase and improvements in the application of the standard should be achieve.

The government has announced a ICMS (Imposto on Circulação of Mercadorias) reduction, levied 18% on imports and is one of the world highest.

In 2016 it also announced the exemption from Industrial Products Tax (IPI) for photovoltaic components that are not produced locally.

These taxes and fees added to the Inmetro (National Institute of Metrology, Standardization and Industrial Quality) Certification and Supplemental ISS rate, which municipalities retain on services not taxed by the ICMS (2% to 5%) represent a significant barrier to the development of photovoltaic in Brazil.

Industry sources indicate that import components to produce solar energy in Brazil now, means supporting a tax charge between 60% and 405%.

The opportunity for large scale photovoltaic solar energy has come up with the first time participation in the A-5 energy auction in December 2013 and the Pernambuco state auction same year.

Fontes I and II solar plants with 11 MW in Tacaratu, Pernambuco, and to Fontes dos Ventos wind farm of 80 MW, form a hybrid solar-wind complex of 91 MW; the first of its kind in the country.

Both projects have a 20 years solar power purchase agreement (PPA) and are the largest photovoltaic plant in operation in the country.

In the course of the 1st Reserve Energy Leilão 2015, promoted by the Brazilian Federal Government, 30 photovoltaic projects have been awarded 1,043 GWp. that will mobilize more than U$D 1,187 million investment.

The average final price of U$D 83,3271/MWh hired implies a discount of 13.5% over the initial price and a great success, reaching one of the lowest prices in the world.

The awarded projects are located in the states of Bahia, Piauí, Paraíba, Minas Gerais and Tocantins. Are 20 years contracts of energy sale, valid from 1 August 2017.

The last photovoltaic government plan sets a target for 2024 of 7 GW in large scale installations and 1.32 GW in distributed generation, doubling their previous plans for 2023.

The first solar modules factory in Brazil began operating in Valinhos in 2015 with an annual production capacity of 580,000 modules.

It aims to implement a new production line in 2016 to manufacture up to 1 million modules per year.