Archivos de la categoría Energia Solar Fotovoltaica

El Módulo Solar

Las células son de silicio en los módulos más utilizados, elemento que es el principal componente de la sílice, el material de la arena.

La distribución regional de la capacidad de producción difiere significativamente en función del tipo de producto y su posición en la cadena de valor.

La capacidad de producción de silicio de grado solar está encabezada por EEUU; seguido por Europa, China, Japón y el resto de Asia.

La capacidad de producción de células de silicio y módulos está dominada por fabricantes chinos y taiwaneses; seguidos de europeos, japoneses y de EEUU.

Los fabricantes de capa delgada todavía deben optimizar la producción para llegar a la estructura de costes óptimos para ser competitivos.

Tarea difícil con precios mucho más bajos del polisilicio, que redundan en un importante descenso de los precios de los módulos de silicio.

Resultado de imagen de fabricación panle solar

Con el fin de evitar los casos de escasez o exceso de oferta, es de suma importancia para garantizar el suministro, una estabilidad en la demanda, basada en un mercado sostenible para que la industria pueda prever el crecimiento del mismo y planificar sus capacidades.

La demanda de sistemas fotovoltaicos depende en gran medida del clima económico general y, lo más importante, de las políticas de apoyo a su desarrollo por parte de los gobiernos.

Las tarifas, junto con la simplificación de los procedimientos administrativos y de conexión a red, así como el acceso prioritario a la red son políticas tendientes a garantizar una demanda sostenible.

Una célula de silicio proporciona una tensión de aproximadamente 0,5 V y una potencia máxima de entre 1 y 2 W.

En el proceso de fabricación de un módulo es preciso conectar entre sí un determinado número de células en serie para producir tensiones de 6, 12 o 24 V indicadas para la mayoría de las aplicaciones.

Para producir un módulo de 12 V se necesitan entre 30 y 40 células.

El proceso de conexión de las células se realiza mediante una soldadura especial que une el dorso de una célula con la cara frontal de la adyacente.

Terminadas las interconexiones eléctricas, las células son encapsuladas en una estructura tipo sándwich (lamina de vidrio templado- EVA – células-EVA – polímeros).

La estructura varía según el fabricante.

Se procede posteriormente a un sellado al vacío, introduciéndolo en un horno especial para su laminación, haciendo estanco el conjunto.

Si cuentan con un marco soporte metálico, se rodea antes el perímetro del módulo con neopreno o algún otro material que lo proteja.

Resultado de imagen de silicio solar

Una vez montadas las conexiones positiva y negativa, se efectúan los siguientes controles con el fin de garantizar una vida útil de 20 años con niveles aceptables de rendimiento:

– Ciclos térmicos (-40º a 90º C)
– Ciclos de humedad.
– Ciclos de congelación.
– Resistencia al viento.
– Resistencia mecánica.
– Resistencia a descargas eléctricas altas.
– Ensayo de atmósfera salina (para ambientes marinos).

La fabricación, comportamiento, características eléctricas y mecánicas del módulo fotovoltaico, vienen determinadas en la ficha técnica del producto que proporciona el fabricante.

Al Igual que en la célula solar son importantes los siguientes parámetros:

– Potencia máxima o potencia pico del módulo PmaxG.
– IPmax: Intensidad cuando la potencia es máxima o corriente en el punto de máxima potencia.
– VPmax: la tensión cuando la potencia también es máxima o tensión en el punto de máxima potencia.

Otros parámetros son:

– Corriente de cortocircuito IscG.
– Tensión de circuito abierto VocG.

Estos parámetros se obtienen en unas condiciones estándar de medida de uso universal según la norma EN61215. Establecidas como sigue y que el fabricante debe especificar:

* Irradiancia: 1000 W/m2 (1 Kw/m2)
* Distribución espectral de la radiación incidente: AM 1,5 (masa de aire)
* Incidencia normal
* Temperatura de la célula: 25ºC.

Las condiciones de trabajo reales de los módulos una vez instalados pueden ser muy diferentes, por lo que conviene conocer las variaciones que pueden producirse, a fin de efectuar las correcciones pertinentes en los cálculos.

En la práctica, la potencia del módulo disminuye aproximadamente un 0,5% por cada grado de aumento de la temperatura de la célula por encima de los 25º C.

Para evitar tener que calcular intensidades medias de radiación, podemos suponer que la temperatura media de trabajo de la célula es 20º superior a la del ambiente.

Por este concepto, el rendimiento baja a un 90%. En las tecnologías que no se basan en silicio cristalino la baja en el rendimiento es menor.

Este es un extracto de los contenidos incluídos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Todo lo que necesitas es Sol. Todo lo que necesitas es Sopelia.

Solar Layout (Fotovoltaica)

Solar Layout es la App para posicionamiento de colectores y módulos solares in situ.

Se trata de la App solar más intuitiva del mercado.

Para utilizarla sobre el terreno no es necesario contar con conexión a Internet porque funciona a partir de la latitud del lugar, obtenida a través de GPS.

Hoy veremos la parte correspondiente a energía solar fotovoltaica.

Para comenzar pulsamos el comando de la derecha representado en la figura de la pantalla inicial por la vivienda con el módulo solar y el cable con el enchufe.

Si no está activado el GPS de nuestro Smartphone, la App nos pedirá que lo activemos para localizar nuestra ubicación.
Inmediatamente aparecerá la imagen de un planeta tierra intermitente con la leyenda “Localizando”.

Cuando el GPS de nuestro dispositivo haya localizado nuestra ubicación aparecerá la siguiente pantalla para que la confirmemos.

Al confirmar nuestra ubicación se desplegará el Menú Uso Equipo Solar.

En el mismo encontramos 4 aplicaciones:

1- Uso invierno: representada por la imagen de la nieve
2- Uso todo el año: representado por las imágenes flor, sol, hoja y nieve
3- Uso primavera / verano: representada por las imágenes flor y sol
4- Conexión a red: representada por la imagen del enchufe

Al seleccionar alguna de las 3 aplicaciones, se desplegará el Menú Opciones.

En el mismo encontramos 3 variables:

1- Inclinación: representada por la figura del colector y un ángulo
2- Orientación: representada por la figura del colector y los puntos cardinales
3- Separación: representada por la figura de 3 filas de colectores

Pulsando la opción Inclinación, obtenemos el valor recomendado de inclinación para la ubicación y aplicación solar seleccionada, acompañado de unos Tips respecto de las pérdidas a considerar.

Pulsando la opción Orientación, obtenemos la descripción del procedimiento para fijar la orientación de los módulos y el acceso a la descarga de App brújula recomendada en caso de que aún no contemos con ella.

Pulsando la opción Separación, se despliega el Menú Tipo de Superficie para que seleccionemos la opción correspondiente (Horizontal / No horizontal). Si la superficie en la que se situarán los módulos es horizontal, debemos introducir el dato Altura del colector en cm.

Si la superficie en la que se situarán los módulos es no horizontal, además del dato Altura del Colector en cm, debemos ingresar el dato Ángulo Inclinación Cubierta. Lo ingresaremos con valor positivo si coincide con el sentido de la inclinación de los módulos y con valor negativo si no coincide.

De esta manera obtenemos la distancia de Separación entre filas de módulos expresada en metros.

Pulsando el botón i se despliegan Tips relacionados con sombreado y localizaciones singulares (zonas de nieve, desérticas y lluviosas).

Descarga Solar Layout y posiciona módulos solares fotovoltaicos sobre el terreno de la manera más intuitiva con Sopelia.

10 Semanas Solares Fotovoltaicas

Este cronograma representa la dosificación recomendada de dedicación para una correcta asimilación de conocimientos durante el curso e-learning de Técnico – Comercial en Energía Solar Fotovoltaica impartido por Sopelia.

Puedes recibir esta formación íntegramente desde tu PC, smartphone o dispositivo móvil.

Supone dedicar entre 1 y 2 horas diarias entre lunes y viernes de cada semana.

* Semana 1: Introducción a la Energía Solar
1.1) El futuro de la energía solar
1.2) El Sol
1.3) Nociones básicas de Física

* Semana 2: Introducción a la Energía Solar
1.4) Nociones básicas de Electricidad
1.5) Nociones básicas de Energía
1.6) Energía del sol
1.7) Tablas
– Resolución Test 1 y 2 y Ejercicio 1

* Semana 3: Energía Solar Fotovoltaica – Equipos
2.1.1) Módulos solares

* Semana 4: Energía Solar Fotovoltaica – Equipos
2.1.2) Acumuladores
2.1.3) Reguladores

* Semana 5: Energía Solar Fotovoltaica – Equipos
2.1.4) Convertidores
2.1.5) Otros elementos

* Semana 6: Energía Solar Fotovoltaica – Equipos
– Resolución Test 3 y Ejercicio 2

* Semana 7: Energía Solar Fotovoltaica – Instalaciones
2.2.1) Dimensionado de un sistema
2.2.2) Cálculo de otros componentes de la instalación

* Semana 8: Energía Solar Fotovoltaica – Instalaciones
2.2.3) Presentación de un proyecto
2.2.4) Ejecución y mantenimiento de una instalación

* Semana 9: Energía Solar Fotovoltaica – Instalaciones
2.2.5) Estudio económico

* Semana 10: Energía Solar Fotovoltaica – Instalaciones
– Resolución Test 4 y 5 y Trabajo Práctico final

Se trata de la formación en Energía Solar con la mejor relación calidad-precio del mercado.

Puede recibirse donde quiera que estés.

Solamente se necesita una computadora, smartphone o dispositivo móvil y conexión a Internet.

Esta acción de formación brinda capacitación técnico – comercial en aplicaciones domésticas de energía solar con el objetivo de difundir la tecnología y desarrollar recursos humanos para su incorporación al mundo laboral y empresarial.

La 1ra edición 2017 comienza el día 18 de abril y finaliza el día 30 de junio.

El plazo de inscripción es hasta el día 15 de abril inclusive en www.energiasrenovables.lat

Ya no tienes excusas, energía solar donde quiera que estés con
Sopelia.

Herramientas Solares Gratuitas (IV)

En Internet podemos encontrar herramientas de libre uso para el dimensionado de instalaciones solares básicas o de baja complejidad y para la estimación de determinados componentes o accesorios.

El equipo de investigación de Sopelia ha realizado una búsqueda y testeo exhaustivos a partir del cual se ha creado una nueva sección en la web corporativa, denominada Herramientas Gratuitas.

Las herramientas seleccionadas fueron clasificadas en 4 categorías.

Hoy analizaremos la cuarta de ellas: Solar Fotovoltaica.

En la primera categoría ya analizamos herramientas para obtener datos acerca del recurso solar y de las demás variables a considerar en la estimación de la potencia que proporcionará la instalación solar en nuestra localización.

En la segunda categoría hemos analizado herramientas para calcular la “carga”, es decir, la demanda energética a satisfacer.

En la tercera categoría hemos analizado herramientas para dimensionar un sistema solar térmico y estimar accesorios del sistema.

Ahora vamos a analizar herramientas para dimensionar un sistema solar fotovoltaico y otras para estimar componentes individuales de un sistema.

El orden de las herramientas no es aleatorio. Hemos dado prioridad a las más intuitivas, las más universales y las que se pueden utilizar online sin necesidad de descarga.

Para esta cuarta categoría nuestra selección es la siguiente:

1) Calculadora Solar

Herramienta de cálculo aproximado a partir de la que se obtiene automáticamente el presupuesto, datos de producción y estudio de rendimiento de la instalación.

A pie de página se puede encontrar una Guía de Navegación y los Manuales.

Resultado de imagen de calculadora solar fotovoltaica

2) Calculadora Solar Instalaciones Aisladas

Aplicación online gratuita para el cálculo de instalaciones solares aisladas.

Permite a los usuarios introducir nuevos componentes de cualquier fabricante y fichas técnicas de productos para ser considerados en el cálculo.

Resultado de imagen de fotovoltaica aislada

3) Calculadora para Dimensionar Sistemas Aislados

Calculadora solar para estimación básica de instalación aislada.

Calcula la capacidad de los paneles solares, de las baterías, del regulador y del inversor.

Resultado de imagen de fotovoltaica aislada

4) Calculadora para Bombeo Solar de Agua

Calculadora para obtener cifras aproximadas de las necesidades de energía para el bombeo solar de agua.

Resultado de imagen de bombeo solar de agua

5) Cálculo de Instalaciones Solares y Eólicas

Herramienta que determina los requerimientos para satisfacer las necesidades de electrificación y bombeo con aporte solar y/o eólico.

Resultado de imagen de eólico solar

6) Simulación Online de Sistema Conectado a Red

Aplicación online para estimar producción e ingreso monetario de un sistema conectado a red.

Resultado de imagen de fotovoltaica conecatada a red

7) Calculadora Capacidad Banco de Baterías

Calculadora para estimar el tamaño del banco de baterías necesario para mantener en funcionamiento consumos con aporte solar.

Resultado de imagen de baterías solares

8) Calculadora Sección de Cables

Herramienta en formato JavaScript para cálculo de cableado de cobre y aluminio en corriente continua.

Resultado de imagen de cable solar fotovoltaica

Energía solar donde quiera que estés con Sopelia.

Células Solares En El Mercado

La comercialización de células fotovoltaicas comenzó con las de silicio monocristalino.

Basadas en secciones de silicio perfectamente cristalizado, han alcanzado rendimientos de entre el 16% y el 20% (24,7% en laboratorio).

Más tarde aparecieron las de silicio policristalino, de fabricación más económica aunque menor rendimiento, pero que presentan la ventaja de poder fabricarse en forma cuadrada y así poder aprovechar mejor la superficie rectangular disponible en un módulo.

Se basan en secciones de una barra de silicio estructurado desordenadamente en forma de pequeños cristales.

Tienen un rendimiento inferior respecto de las monocristalinas (en laboratorio del 19,8% y en módulos comerciales del 14%) siendo su precio generalmente más bajo.

Resultado de imagen de células solares de silicio

Luego aparecieron las tecnologías de lámina delgada que proporcionan rendimientos similares a los de módulos de silicio con temperaturas altas o en condiciones de radiación difusa.

A continuación se detallan módulos de capa fina de distintos materiales semiconductores:

Silicio amorfo (TFS): basados también en silicio, que no sigue en este caso estructura cristalina alguna.

Habitualmente empleado para pequeños dispositivos electrónicos (calculadoras, relojes, etc.) y en pequeños módulos portátiles.

Su rendimiento máximo en laboratorio ha sido del 13% siendo en módulos comerciales del 8%.

Arseniuro de Galio (GaAs): células altamente eficientes para ser utilizadas en aplicaciones especiales como satélites, vehículos de exploración espacial, etc.

Las células Tándem de GaAs son las células solares más eficientes, alcanzando valores de hasta un 39%.

Teluro de cadmio (CdTe): rendimiento en laboratorio 16% y en módulos comerciales 10%.

El inconveniente es que el teluro de cadmio es una sustancia tóxica. Por eso las empresas fabricantes están trabajando en el proceso de reciclaje de sus módulos.

El siguiente escalón en esta evolución está representado por las llamadas células Tándem que combinan dos o más semiconductores distintos.

Debido a que cada tipo de material aprovecha sólo una parte del espectro electromagnético de la radiación solar, mediante la combinación de dos o más materiales es posible aprovechar una mayor parte del mismo.

La primera vertiente de células solares Tándem son las CIGS (cobre-indio-galio-selenio).

En este caso la unión no es del tipo p-n como la del silicio, sino una heterounión compleja con la que se obtienen rendimientos del 11%.

La segunda variante de células solares Tándem son las CIS (cobre-indio-selenio). Con rendimientos del 11% en módulos comerciales.

Otra vertiente de las células solares Tándem son las CZTS (cobre-zinc-estaño-azufre-selenio) con rendimientos del 9,6%.

Resultado de imagen de células solares CIGS

Por último encontramos las células solares plásticas basadas en polímeros.

Son un tipo de célula solar flexible que puede presentarse en muchas formas incluyendo células solares orgánicas.

Son ligeras, potencialmente desechables, baratas de fabricar (a veces utilizando la electrónica impresa), personalizables a nivel molecular y su fabricación tiene un menor impacto en el medio ambiente.

Tienen un rendimiento aproximado del 5% y son relativamente inestables ante la degradación fotoquímica.

Por esta razón, la gran mayoría de las células solares se basan en materiales inorgánicos.

Las células solares de polímeros, no requieren una orientación óptima al sol ya que el plástico recoge energía de hasta 70° del eje de sol a sol al aire libre (y en cualquier orientación en el interior).

Su campo de aplicación es principalmente teléfonos móviles y ordenadores portátiles.

Resultado de imagen de células solares polímeros

Las pruebas que actualmente se están realizando para producir células solares con nuevos materiales incluyen los puntos cuánticos coloidales y las perovskitas de haluro.

Los avances en energía solar son imparables y su utilización a nivel masivo depende mucho de éstos, ya que se disminuirá el espacio necesario para captar una determinada cantidad de energía y se aumentará el rendimiento de los sistemas.

Este es un extracto de los contenidos incluídos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Energía solar dónde quiera que estés con Sopelia.

Efecto Fotovoltaico

La conversión directa de energía solar en energía eléctrica utiliza el fenómeno físico denominado efecto fotovoltaico de interacción de la radiación luminosa con los electrones de valencia en medios semiconductores.

En el caso de una célula convencional de silicio cristalino, 4 de los normalmente 14 electrones que posee un átomo de silicio son de valencia y por lo tanto pueden participar en interacciones con otros átomos (tanto de silicio como de otros elementos).

Dos átomos adyacentes de silicio puro tienen en común un par de electrones.

Hay un fuerte enlace electrostático entre un electrón y los dos átomos que contribuye a mantener unidos.

Ese enlace puede ser separado por una cierta cantidad de energía.

Si la energía suministrada es suficiente, el electrón es llevado a un nivel energético superior (banda de conducción), donde es libre de desplazarse.

Cuando pasa a la banda de conducción, el electrón deja detrás de sí un “hueco”, es decir un vacío donde falta un electrón. Un electrón cercano puede llenar fácilmente el hueco, intercambiándose así de lugar con éste.

Para aprovechar la electricidad es necesario crear un movimiento coherente de electrones (y de huecos) mediante un campo eléctrico dentro de la célula.

El campo se forma con tratamientos físicos y químicos que crean un exceso de átomos cargados positivamente en una parte del semiconductor y un exceso de átomos cargados negativamente en el otro.

Esto se obtiene introduciendo pequeñas cantidades de átomos de boro (cargados positivamente) y de fósforo (cargados negativamente) en la estructura cristalina del silicio, es decir dopando el semiconductor.

La atracción electrostática entre las dos especies atómicas crea un campo eléctrico fijo que da a la célula la estructura llamada de diodo, en la que el paso de corriente está obstaculizado en una dirección y facilitado en la contraria.

En la capa dopada con fósforo, que tiene 5 electrones exteriores contra los 4 de silicio, está presente una carga negativa formada por un electrón de valencia para cada átomo de fósforo.

En la capa dopada con boro, que tiene 3 electrones exteriores, se crea una carga positiva formada por los huecos presentes en los átomos de boro cuando se combinan con el silicio.

Resultado de imagen de electrones silicio cristalino

La primera capa, de carga negativa, se indica con N; la otra, de carga positiva, con P; la zona de separación se llama unión P-N.

Al acercar las dos capas se activa un flujo electrónico desde la zona N hasta la zona P, que al conseguir el punto de equilibrio electrostático, determina un exceso de carga positiva en la zona N y un exceso de carga negativa en la zona P.

El resultado es un campo eléctrico interno al dispositivo que separa los electrones en exceso generados por la absorción de la luz en los huecos correspondientes, empujándolos hacia direcciones opuestas (los electrones hacia la zona N y los huecos hacia la zona P) de manera que un circuito exterior pueda recoger la corriente generada.

Por eso, cuando la luz incide en la célula fotovoltaica, las cargas positivas son empujadas en número creciente hacia la parte superior de la célula y las cargas negativas hacia la inferior, o viceversa, según el tipo de célula.

Resultado de imagen de efecto fotovoltaico

Si la parte inferior y la superior están conectadas por un conductor, las cargas libres lo atraviesan y se obtiene una corriente eléctrica.

Mientras la célula permanece expuesta a la luz, la electricidad fluye con regularidad como corriente continua.

La eficiencia de conversión en células comerciales de silicio normalmente está comprendida entre el 13% y el 20%.

La típica célula fotovoltaica tiene un espesor total de entre 0,25 y 0,35 mm.

Generalmente es de forma cuadrada, tiene una superficie comprendida entre 100 y 225 mm² y produce (con una radiación de 1 kW/m² a una temperatura de 25°C) una corriente comprendida entre 3 y 4 A, una tensión de aproximadamente 0,5 V y una potencia correspondiente de 1,5 – 2 Wp.

Este es un extracto de los contenidos incluídos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Energía solar dónde quiera que estés con Sopelia.

Solar Layout (Fotovoltaica)

Solar Layout es la App para posicionamiento de colectores y módulos solares in situ.

Se trata de la App solar más intuitiva del mercado.

Para utilizarla sobre el terreno no es necesario contar con conexión a Internet porque funciona a partir de la latitud del lugar, obtenida a través de GPS.

Hoy veremos la parte correspondiente a energía solar fotovoltaica.

Para comenzar pulsamos el comando de la derecha representado en la figura de la pantalla inicial por la vivienda con el módulo solar y el cable con el enchufe.

fig-1

Si no está activado el GPS de nuestro Smartphone, la App nos pedirá que lo activemos para localizar nuestra ubicación.

Inmediatamente aparecerá la imagen de un planeta tierra intermitente con la leyenda “Localizando”.

Cuando el GPS de nuestro dispositivo haya localizado nuestra ubicación aparecerá la siguiente pantalla para que la confirmemos.

fig-2

Al confirmar nuestra ubicación se desplegará el Menú Uso Equipo Solar.

En el mismo encontramos 4 aplicaciones:

1- Uso invierno: representada por la imagen de la nieve
2- Uso todo el año: representado por las imágenes flor, sol, hoja y nieve
3- Uso primavera / verano: representada por las imágenes flor y sol
4- Conexión a red: representada por la imagen del enchufe.

fig-3

Al seleccionar alguna de las 3 aplicaciones, se desplegará el Menú Opciones.

En el mismo encontramos 3 variables:

1- Inclinación: representada por la figura del colector y un ángulo
2- Orientación: representada por la figura del colector y los puntos cardinales
3- Separación: representada por la figura de 3 filas de colectores.

fig-4

Pulsando la opción Inclinación, obtenemos el valor recomendado de inclinación para la ubicación y aplicación solar seleccionada, acompañado de unos Tips respecto de las pérdidas a considerar.

fig-5

Pulsando la opción Orientación, obtenemos la descripción del procedimiento para fijar la orientación de los módulos y el acceso a la descarga de App brújula recomendada en caso de que aún no contemos con ella.

fig-6

Pulsando la opción Separación, se despliega el Menú Tipo de Superficie para que seleccionemos la opción correspondiente (Horizontal / No horizontal). Si la superficie en la que se situarán los módulos es horizontal, debemos introducir el dato Altura del colector en cm.

fig-7

Si la superficie en la que se situarán los módulos es no horizontal, además del dato Altura del Colector en cm, debemos ingresar el dato Ángulo Inclinación Cubierta.

Lo ingresaremos con valor positivo si coincide con el sentido de la inclinación de los módulos y con valor negativo si no coincide.

fig-8

De esta manera obtenemos la distancia de Separación entre filas de módulos expresada en metros.

fig-9

Pulsando el botón i se despliegan Tips relacionados con sombreado y localizaciones singulares (zonas de nieve, desérticas y lluviosas).

Descarga Solar Layout y posiciona módulos solares fotovoltaicos sobre el terreno de la manera más intuitiva con Sopelia.

10 Semanas Fotovoltaicas

Este cronograma representa la dosificación recomendada de dedicación para una correcta asimilación de conocimientos durante el curso e-learning de Técnico – Comercial en Energía Solar Fotovoltaica impartido por Sopelia.

Puedes recibir esta formación íntegramente desde tu computadora, smartphone o dispositivo móvil.

Supone dedicar entre 1 y 2 horas diarias entre lunes y viernes de cada semana.

2016-08-23

* Semana 1: Introducción a la Energía Solar
1.1) El futuro de la energía solar
1.2) El Sol
1.3) Nociones básicas de Física

* Semana 2: Introducción a la Energía Solar
1.4) Nociones básicas de Electricidad
1.5) Nociones básicas de Energía
1.6) Energía del sol
1.7) Tablas
– Resolución Test 1 y 2 y Ejercicio 1

* Semana 3: Energía Solar Fotovoltaica – Equipos
2.1.1) Módulos solares

* Semana 4: Energía Solar Fotovoltaica – Equipos
2.1.2) Acumuladores
2.1.3) Reguladores

* Semana 5: Energía Solar Fotovoltaica – Equipos
2.1.4) Convertidores
2.1.5) Otros elementos

* Semana 6: Energía Solar Fotovoltaica – Equipos
– Resolución Test 3 y Ejercicio 2

* Semana 7: Energía Solar Fotovoltaica – Instalaciones
2.2.1) Dimensionado de un sistema
2.2.2) Cálculo de otros componentes de la instalación

* Semana 8: Energía Solar Fotovoltaica – Instalaciones
2.2.3) Presentación de un proyecto
2.2.4) Ejecución y mantenimiento de una instalación

* Semana 9: Energía Solar Fotovoltaica – Instalaciones
2.2.5) Estudio económico

* Semana 10: Energía Solar Fotovoltaica – Instalaciones
– Resolución Test 4 y 5 y Trabajo Práctico final

2016-08-23 (1)

Se trata de la formación en Energía Solar con la mejor relación calidad-precio del mercado.

Puede recibirse donde quiera que estés.

Solamente se necesita una computadora, smartphone o dispositivo móvil y conexión a Internet.

Por tratarse de la 1era edición hay un 50% de descuento sobre el PVP.

Esta acción de formación brinda capacitación técnico – comercial en aplicaciones domésticas de energía solar con el objetivo de difundir la tecnología y desarrollar recursos humanos para su incorporación al mundo laboral y empresarial.

La edición 2016 comienza el día 19 de septiembre y finaliza el día 25 de noviembre.

El plazo de inscripción es hasta el día 16 de septiembre inclusive en www.energiasrenovables.lat

Ya no tienes excusas, energía solar donde quiera que estés con Sopelia.

Rentabilidad Fotovoltaica

La rentabilidad de un sistema fotovoltaico debe ser analizada con ciertos matices.

El factor de más peso a la hora de decidir si resulta viable o no, es el ahorro potencial de energía durante sus años de vida útil.

En el caso de un sistema fotovoltaico aislado el factor económico no es el principal determinante para decidir o no su instalación (electrificación de áreas rurales, señalizaciones marinas, demanda de energía en lugares remotos, etc.).

Sistemas Aislados

Puede evaluarse su instalación por 2 razones:

1. Por necesitarse una autonomía de abastecimiento total

2. Por no llegar la red eléctrica hasta el lugar donde se origina la demanda de energía

En este último caso se puede optar por el tendido de una nueva línea de distribución desde el punto más cercano de la red general o elegir un sistema autónomo.

Cuando no se necesiten grandes potencias y la necesidad de consumo sea moderada, la opción del generador autónomo resulta más interesante. Obviamente, el mayor o menor nivel de radiación solar del lugar es otro factor determinante para decidir una u otra opción.

En las zonas de abundante viento, un aerogenerador solo o combinado con un sistema fotovoltaico puede ser la opción más conveniente.

En los casos en los que se necesite una potencia bastante grande que exija un gran número de módulos solares y al mismo tiempo el consumo no fuera lo suficientemente alto como para justificar el tendido de una línea de red, el generador de gasoil puede ser la mejor opción.

Si ambos presupuestos (solar aislada y tendido de red) son de similar magnitud (o incluso el de tendido de una línea de red es ligeramente superior), puede ser más interesante acceder a la red eléctrica, que asegurará cualquier consumo en cualquier época del año.

Sistemas Conectados a Red

Consiste en un campo de módulos y un inversor capaz de convertir la CC generada en CA de características idénticas a la de la red de distribución eléctrica, para poder inyectar en dicha red la energía producida por los módulos.

A cambio, puede recibirse una prima de contribución (feed-in tariff) establecida por ley durante un plazo que generalmente oscila entre los 15 y los 25 años.

Para realizar el estudio económico se debe determinar en primer lugar la producción de electricidad en función de las horas de sol de la localización de la instalación y de la potencia pico a instalar.

Luego se multiplica la producción de electricidad anual por la prima de contribución que se asigne al proyecto.

Por último se elabora un cash flow detallando los ingresos (venta de electricidad y recuperación de impuestos) y egresos (inversión inicial, gastos anuales de mantenimiento y seguro, gastos anuales administrativos y financieros) para el período total.

A partir de los datos obtenidos se determina el plazo de recupero y TIR de la inversión.

La otra modalidad es el net-metering.

En este caso, el propietario del sistema fotovoltaico podrá tomar energía de la red cuando su sistema no pueda proporcionar la suficiente para satisfacer su demanda, e inyectar energía a la red cuando su sistema produzca por encima de la necesaria para satisfacer su demanda.

El precio de los módulos disminuyó alcanzando el umbral de U$D 0,50/W Exworks para módulos convencionales de silicio cristalino.

De manera simultánea, el precio de la electricidad generada a partir de combustibles fósiles se incrementa anualmente.

De hecho, se estima que varios países europeos alcanzarán la grid-parity (igual precio entre electricidad de origen fotovoltaico y convencional) en 2020.

En los países en desarrollo, los sistemas fotovoltaicos conectados a la red eléctrica seguirán siendo todavía una opción muy costosa debido a los elevados subsidios que reciben la generación y distribución eléctrica; lo que limita su desarrollo.

El precio llave en mano de una instalación fija conectada a red (módulos, estructuras de soporte, onduladores, protecciones, sistemas de medición, costes del proyecto, instalación y permisos administrativos) oscila entre U$D 2 y 5 /W en función del tamaño y localización de la instalación.

Puedes acceder a contenidos de este tipo en el Manual Técnico – Comercial de Energía Solar Fotovoltaica de Sopelia.

Solar FV Latinoamérica

Latinoamérica genera cerca del 7% del total de la electricidad mundial y las fuentes no tradicionales representan sólo el 6% del mix energético.

Se espera que para el 2050 más del 20% de la electricidad generada en la región provenga de energías renovables no hidráulicas.

¿Puede ser importante el aporte de la energía solar fotovoltaica?

Esta tecnología presenta gran potencial en la región, pero en la mayoría de los países sigue marginada a un segundo plano en las decisiones energéticas y lo que se hace al respecto va dirigido muchas veces a “la tribuna” y muy poco se concreta.

Comparada con el resto del mundo, la tasa de implementación de energía solar fotovoltaica en América Latina es muy baja.

Anualmente se espera la instalación de unos 100 GW de energía solar fotovoltaica a nivel mundial y habitualmente sólo el 1% corresponde a esta región.

Sin embargo, el hecho de no haber sido una de las regiones donde se inició el desarrollo de esta tecnología le permitiría aprender de los errores cometidos en otras regiones o países.

Hay que distinguir entre desarrollo industrial solar (fabricación de módulos y otros componentes) y producción de energía solar (electricidad solar).

El desarrollo industrial solar en la región lo tiene difícil con la abrupta caída en los precios de los módulos.

En cambio, la producción de electricidad solar se ve favorecida por esta caída en el precio de los módulos y hace más competitiva a la energía solar fotovoltaica.

El costo promedio de 1 W instalado de energía solar fotovoltaica se ha reducido radicalmente en los últimos años y la mayoría de las proyecciones indican que esta tendencia va a continuar. Los costos subyacentes asociados a la energía solar fotovoltaica también continuarán disminuyendo.

La capacidad instalada fotovoltaica de los países latinoamericanos siempre estuvo orientada a aplicaciones aisladas para atender necesidades de poblaciones rurales, sin acceso a la red eléctrica.

Recién a partir de 2014 los proyectos solares fotovoltaicos comenzaron a atraer capital.

América Latina tiene 51 plantas solares fotovoltaicas en operación y ha instalado 625 MW de energía fotovoltaica en 2014, frente a 133 MW en 2013. Se han anunciado 23 GW de proyectos, 5,2 GW en contratos, 1,1 GW en construcción y 722 MW en operación.

Desde la consultora GTM Research señalan que la potencia instalada en MW ha registrado un aumento del 370% en 2014 y se prevé que suba un 237% en 2015.

Esta cifra podría revisarse a la baja tras el derrumbe de precios que en los últimos meses ha sacudido a la industria petrolera y al sector de las materias primas.

Hoy en día, en los países latinoamericanos con buenos niveles de radiación y un mercado energético sin grandes subsidios, el modelo de la energía solar fotovoltaica es autosostenible.

En algunas ciudades de México, Brasil, Chile y Perú, el coste de la energía solar fotovoltaica se sitúa muy cerca de la paridad de red.

Ya cuentan con normativa nacional para conectar generadores fotovoltaicos bajo el sistema de medición neta: Costa Rica, Guatemala, México, Panamá, República Dominicana y Uruguay.

Los lugares más idóneos para localizar grandes plantas son los desiertos cerca de la costa del Pacífico y el nordeste de Brasil.

Durante los próximos 20 años se espera que la inversión en energía solar fotovoltaica llegue a unos U$S 100.000 millones anuales en todo el mundo.

Se estima una previsión de desarrollo de 3,5 GW para 2016 en América Latina.

¿ Es posible ?

Para saberlo vamos a hacer un análisis país por país, porque hay realidades muy distintas.