El Poder Del Networking

Todo comenzó hace aproximadamente 1 año, con el ocasional encuentro entre un experto en energía solar y otro en digital marketing.

A lo largo de estos 12 meses:

* Se lanzó el blog que usted está leyendo en estos momentos.

El mismo comprende un trabajo de investigación acerca del sector solar en la región de América Latina.

Tres post de cada uno de los 20 países de la región describirán su matriz energética renovable, su sector solar térmico de aplicaciones domésticas y su sector fotovoltaico.

También se incluyen contenidos acerca de tecnología solar, información de actualidad y de nuevos desarrollos.

* Se montó una web e-learning solar sobre plataforma Moodle 3.1 que le permite recibir íntegramente formación en energía solar desde su PC, Tablet o Smartphone donde quiera que esté.

* Se publicaron 3 ebooks de venta exclusiva en Amazon (Introducción a la Energía Solar) y en Casa del Libro (Manual Técnico-Comercial de Energía Solar Térmica y Manual Técnico-Comercial de Energía Solar Fotovoltaica).

* Se desarrolló Solar Layout, la app solar más intuitiva del mercado para posicionamiento de colectores y módulos solares en el lugar de instalación.

fig-1

* Se participó en la gestión y desarrollo de proyectos (no sólo en América Latina).

* Se comercializaron equipos y soluciones llave en mano de solar térmica, fotovoltaica e iluminación solar.

* Hemos sido Media Partner del evento más importante de energía solar a nivel regional, Intersolar South America.

Todo esto fue posible gracias a los cambios y transformaciones que se han producido en los últimos años en los sectores informática, telecomunicaciones y trabajo.

Actualmente profesionales ubicados en distintas localizaciones pueden crear, intercambiar información, interactuar de manera virtual, desarrollar y gestionar proyectos.

Los equipos de trabajo son flexibles. Nacen, se transforman y mutan en función de las oportunidades de negocio.

El combustible para que todo esto funcione ha sido un potente networking de profesionales y empresas del sector energía solar y sectores vinculados que aumenta día a día con el impulso de las redes sociales.

Resultado de imagen de solar networking

El que podríamos denominar “elenco estable” de colaboradores es el siguiente:

+ Marcelo Ferrari – CEO

+ Nahuel Rull – Argentina Country Manager

+ Tomás Ruiz – Experto en Energía Solar Térmica

+ Francisco Ramírez – Experto en Energía Solar Fotovoltaica

+ Federico Redin – Experto en instalaciones

+ Dante Fiorini – Experto en Digital Marketing

+ Rafael Chacón Almeda – Experto en E-learning

+ Antonio Vites – Experto en SEO & SEM

+ Sergio Fernandez Alonso – Experto en Programación y Desarrollo de Apps.

Queremos desearles unas muy felices fiestas y un próspero año 2017 en el que esperamos seguir colaborando en vuestros proyectos de energía solar y contar con ustedes para seguir tendiendo la Red Sopelia.

Efecto Fotovoltaico

La conversión directa de energía solar en energía eléctrica utiliza el fenómeno físico denominado efecto fotovoltaico de interacción de la radiación luminosa con los electrones de valencia en medios semiconductores.

En el caso de una célula convencional de silicio cristalino, 4 de los normalmente 14 electrones que posee un átomo de silicio son de valencia y por lo tanto pueden participar en interacciones con otros átomos (tanto de silicio como de otros elementos).

Dos átomos adyacentes de silicio puro tienen en común un par de electrones.

Hay un fuerte enlace electrostático entre un electrón y los dos átomos que contribuye a mantener unidos.

Ese enlace puede ser separado por una cierta cantidad de energía.

Si la energía suministrada es suficiente, el electrón es llevado a un nivel energético superior (banda de conducción), donde es libre de desplazarse.

Cuando pasa a la banda de conducción, el electrón deja detrás de sí un “hueco”, es decir un vacío donde falta un electrón. Un electrón cercano puede llenar fácilmente el hueco, intercambiándose así de lugar con éste.

Para aprovechar la electricidad es necesario crear un movimiento coherente de electrones (y de huecos) mediante un campo eléctrico dentro de la célula.

El campo se forma con tratamientos físicos y químicos que crean un exceso de átomos cargados positivamente en una parte del semiconductor y un exceso de átomos cargados negativamente en el otro.

Esto se obtiene introduciendo pequeñas cantidades de átomos de boro (cargados positivamente) y de fósforo (cargados negativamente) en la estructura cristalina del silicio, es decir dopando el semiconductor.

La atracción electrostática entre las dos especies atómicas crea un campo eléctrico fijo que da a la célula la estructura llamada de diodo, en la que el paso de corriente está obstaculizado en una dirección y facilitado en la contraria.

En la capa dopada con fósforo, que tiene 5 electrones exteriores contra los 4 de silicio, está presente una carga negativa formada por un electrón de valencia para cada átomo de fósforo.

En la capa dopada con boro, que tiene 3 electrones exteriores, se crea una carga positiva formada por los huecos presentes en los átomos de boro cuando se combinan con el silicio.

Resultado de imagen de electrones silicio cristalino

La primera capa, de carga negativa, se indica con N; la otra, de carga positiva, con P; la zona de separación se llama unión P-N.

Al acercar las dos capas se activa un flujo electrónico desde la zona N hasta la zona P, que al conseguir el punto de equilibrio electrostático, determina un exceso de carga positiva en la zona N y un exceso de carga negativa en la zona P.

El resultado es un campo eléctrico interno al dispositivo que separa los electrones en exceso generados por la absorción de la luz en los huecos correspondientes, empujándolos hacia direcciones opuestas (los electrones hacia la zona N y los huecos hacia la zona P) de manera que un circuito exterior pueda recoger la corriente generada.

Por eso, cuando la luz incide en la célula fotovoltaica, las cargas positivas son empujadas en número creciente hacia la parte superior de la célula y las cargas negativas hacia la inferior, o viceversa, según el tipo de célula.

Resultado de imagen de efecto fotovoltaico

Si la parte inferior y la superior están conectadas por un conductor, las cargas libres lo atraviesan y se obtiene una corriente eléctrica.

Mientras la célula permanece expuesta a la luz, la electricidad fluye con regularidad como corriente continua.

La eficiencia de conversión en células comerciales de silicio normalmente está comprendida entre el 13% y el 20%.

La típica célula fotovoltaica tiene un espesor total de entre 0,25 y 0,35 mm.

Generalmente es de forma cuadrada, tiene una superficie comprendida entre 100 y 225 mm² y produce (con una radiación de 1 kW/m² a una temperatura de 25°C) una corriente comprendida entre 3 y 4 A, una tensión de aproximadamente 0,5 V y una potencia correspondiente de 1,5 – 2 Wp.

Este es un extracto de los contenidos incluídos en el Manual Técnico-Comercial de Energía Solar Fotovoltaica y en la formación e-learning de Sopelia.

Energía solar dónde quiera que estés con Sopelia.

El Salvador Solar Térmica

Grande fue nuestra sorpresa cuando comenzamos a realizar el trabajo de investigación acerca del sector de aplicaciones domésticas de energía solar térmica en El Salvador.

Considerando que en la región central del país la irradiación solar es alta (5.3 kWh/m2/día), en comparación con la de otras localizaciones como Alemania o Tokio (3.3 kWh/m2/día), el potencial es enorme.

Ante la casi inexistente información disponible al respecto (y la falta de respuesta de organismos oficiales), decidimos consultar a profesionales y empresas del sector energías renovables en El Salvador.

Las conclusiones son:

1) Hay muy pocas empresas que ofrecen equipos de energía solar térmica (algunas, inclusive con inventario que desean liquidar ante el bajo volumen de ventas)

2) Lamentablemente la mentalidad local aún se enfoca más en la inversión inicial que en el ahorro a largo plazo por la reducción en el gasto por consumo de electricidad

3) El uso prácticamente se limita a los sectores hotelero y hospitalario y es irrelevante en el sector residencial

4) No existe normativa que regule e impulse el desarrollo del sector.

Resultado de imagen de solar térmica el salvador

Esta situación, que se repite en muchos países latinoamericanos con recurso solar de gran potencial, plantea el interrogante de por qué es tan inferior el desarrollo de la solar térmica respecto de la fotovoltaica.

Para responder esta pregunta vamos a hacer una breve comparación entre ambas tecnologías solares:

– Aplicaciones domésticas de energía solar térmica

+ Es una tecnología más simple

+ Es más eficiente respecto al espacio utilizado

+ Se obtienen mayores rendimientos (alrededor del 40% en el colector solar respecto de 20% máximo del módulo solar)

+ La fracción solar puede superar fácilmente el 70% en localizaciones con nivel de radiación medio-alto

+ Es una tecnología con menor nivel de complejidad en su instalación

Aspectos a tener en cuenta:

* El rendimiento de la instalación es mucho menor en los meses de invierno, cuando las necesidades de agua caliente son mayores

* Si en el lugar de la instalación hay riesgo de heladas, el uso de anticongelantes en el fluido caloportador es indispensable.

Resultado de imagen de solar térmica el salvador

– Aplicaciones de energía solar fotovoltaica

+ Las instalaciones fotovoltaicas son más versátiles

+ Los módulos fotovoltaicos tienen mayor vida útil (30 años con una garantía de 20 años por parte de casi todos los fabricantes) que los colectores solares térmicos (10 años con garantía entre 1 y 5 años).

+ No les afectan las heladas

Aspectos a tener en cuenta:

* Mayor inversión respecto instalación solar térmica de potencia equivalente

* Las instalaciones conectadas a red están sometidos a numerosos trámites burocráticos y a impuestos que alargan el tiempo de amortización de la instalación

* Es una tecnología más reciente que necesita avances técnicos que mejoren su rendimiento y eficiencia.

Podemos concluir que la balanza se inclina levemente a favor de la solar térmica.

Entonces, por qué es mayor el desarrollo de la fotovoltaica ?

La respuesta es que la solar térmica se desarrolla casi exclusivamente en forma de generación distribuida de energía, mientras que la solar fotovoltaica lo hace principalmente a partir de grandes centrales de generación.

Energía solar donde quiera que estés con Sopelia.

Herramientas Solares Gratuitas (I)

En Internet podemos encontrar herramientas de libre uso para el dimensionado de instalaciones solares básicas o de baja complejidad y para la estimación de determinados componentes o accesorios.

El equipo de investigación de Sopelia ha realizado una búsqueda y testeo exhaustivos a partir del cual se ha creado una nueva sección en la web corporativa, denominada Herramientas Solares Gratuitas.

Las herramientas seleccionadas fueron clasificadas en 4 categorías.

Hoy analizaremos la primera de ellas: Recurso Solar y Otros Datos de Partida.

En esta categoría encontraremos datos acerca del recurso solar y de las demás variables a considerar para estimar la potencia que proporcionará la instalación solar en nuestra localización.

Se trata de los datos de partida para dimensionar el sistema solar necesario para satisfacer nuestra demanda energética.

El orden de las herramientas no es aleatorio. Hemos dado prioridad a las más intuitivas, las más universales y las que se pueden utilizar online sin necesidad de descarga.

Para esta primera categoría nuestra selección es la siguiente:

1) Datos meteorológicos y de energía solar

Patrocinada por el Programa de Aplicaciones Científicas de la NASA y desarrollada por el Proyecto de Predicción Mundial de Recursos Energéticos, esta web ofrece datos y documentación de soporte para el dimensionado de instalaciones solares. La sección de “Data Retrieval” que nos interesa es “Meteorology and Solar Energy” y dentro de ésta, “Data Tables for a Particular Location”. Una vez allí, ingresando Latitud y Longitud de nuestra localización, accedemos a una serie de parámetros de cálculo que podemos seleccionar u obtener en su totalidad.

Resultado de imagen de nasa

2) Calculadora Solar Diaria y Anual

Hoja de cálculo desarrollada por NOOA Earth System Research Laboratory de EEUU basada en las ecuaciones de algoritmos astronómicos de Jean Meeus. Permite calcular datos solares para día, año y localización específicos.

Resultado de imagen de noaa

3) Global Atlas de Energías Renovables

Sistema de información geográfica en línea (GIS) interrelacionado con centros de datos distribuidos por todo el mundo. Además de obtener información sobre los recursos de energías renovables se puede acceder a información como densidad poblacional, topografía, uso del suelo, infraestructuras y áreas protegidas. El objetivo de este sistema es permitir a los usuarios la identificación de áreas de interés para su posterior prospección. Es una iniciativa que involucra a institutos nacionales, agencias de energía, empresas privadas y organizaciones internacionales.

Resultado de imagen de international renewable energy agency

4) Opensolar

Base de datos abierta (se puede extraer e introducir información) con valores diarios globales promedio de radiación solar para cada mes del año medidos sobre la superficie terrestre.

5425-opensolardb-org-banner-2

5) Cálculo de radiación media mensual

Herramienta desarrollada por el grupo de investigación IDEA para calcular la radiación media mensual sobre superficies arbitrariamente orientadas e inclinadas.

Resultado de imagen de universidad de jaén

Accediendo a la sección Herramientas Solares Gratuitas de la web corporativa de Sopelia usted encontrará los links para disponer de estas herramientas y comenzar a configurar su futura instalación solar.

Energía solar donde quiera que estés con Sopelia.